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A B S T R A C T   

Cooking is an important source of organic aerosols (OA), particularly in urban areas, but it has not been explicitly 
included in current emission inventories in China. This study estimated the organic aerosol emissions from 
cooking during winter over the Pearl River Delta (PRD) region, China. Using the retrieved hourly cooking organic 
aerosol (COA) concentrations at two sites in Hong Kong and Guangzhou, population density, and daily per capita 
COA emissions, we determined the spatial and temporal distribution of COA emissions over the PRD region based 
on two approaches by treating COA as non-volatile (NVCOA) and semi-volatile (SVCOA), respectively. By using 
the estimated COA emissions and the Weather Research and Forecasting model coupled with chemistry (WRF- 
Chem) model, we reproduced the diurnal cycles of COA concentrations at the PolyU site in Hong Kong and Panyu 
site in Guangzhou. We also resolved the different patterns of COA between weekdays and weekends. The mean 
COA concentration during wintertime over the urban areas of the PRD region was 0.7 μg m− 3 and 0.9 μg m− 3 for 
the NVCOA and SVCOA cases, respectively, contributing 5.1% and 6.9% to the urban OA concentrations. The 
total COA emissions in winter over the PRD region were estimated to be 3.5 × 108 g month− 1 and 3.8 × 108 g 
month− 1 for the NVCOA and SVCOA cases, respectively, adding 34.8% and 37.8% to the total primary organic 
aerosol emissions. Considering COA emissions in the model increased the mean regional OA concentrations by 
4.6% and 7.4% for the NVCOA and SVCOA cases, respectively. Our study therefore highlights the importance of 
cooking activities to OA concentrations in winter over the PRD region.   

1. Introduction 

Organic aerosol (OA) is an important component of PM2.5, consti-
tuting a large fraction of its mass worldwide (Zhang et al., 2007; Jimenez 
et al., 2009). Two types of OA are usually used to represent different OA 
formation pathways, namely primary OA (POA) with direct emissions 
from various combustion sources, and secondary OA (SOA) formed 
through various oxidation pathways in the atmosphere (Hallquist et al., 
2009; Zhang et al., 2011; Zhou et al., 2020). The radiative balance, cloud 
properties, and precipitation could be influenced by OA via absorbing or 

scattering the solar radiation, and acting as cloud condensation nuclei 
and ice nuclei (IPCC, 2013). High OA concentrations are also harmful to 
human health (Yan et al., 2019). Reliable OA emission inventories are of 
vital importance for evaluating the climatic and human effects of OA, 
and could also provide important information for source apportionment 
of OA. 

In China, chemical transport models for OA simulations have been 
improved significantly in recent years, but most model results continue 
to underestimate the observed OA concentrations (Fu et al., 2012; Li 
et al., 2013; Feng et al., 2016; Hu et al., 2017; Miao et al., 2020). The 
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underestimation has been shown to originate from under-predicted SOA 
formation, or misrepresented or missing sources of POA in the emission 
inventories. One missing primary source of POA in emission inventories 
is cooking (Zheng et al., 2018). 

Using aerosol mass spectrometer (AMS) measurements with positive 
matrix factorization (PMF) analyses, several studies have reported that 
cooking OA (COA) is an important component of OA worldwide and 
contribute 10%–35% to the total OA mass (Allan et al., 2010; Sun et al., 
2011, 2018; Mohr et al., 2012; Crippa et al., 2013; Xu et al., 2015), 
although the AMS measurement might likely overestimate COA con-
centrations (Reyes-Villegas et al., 2018; Katz et al., 2021). In China, the 
contributions of COA to OA in winter were found to be relatively higher 
during non-haze days (9.3%–11.5%), compared with those during haze 
days (3.6%–5.8%) (Elser et al., 2016). In the Pearl River Delta (PRD) 
region in southern China, the mass fractions of COA in OA were higher in 
urban areas (20.6%–34.6%) than those in the rural areas (6.5%–9.6%) 
(Lee et al., 2015; Qin et al., 2017; Cao et al., 2018; Yao et al., 2021). 

Cooking emissions are affected by various factors, such as cooking 
style, oils, food ingredients, temperature, and duration (Wang et al., 
2017). Using the retrieved COA concentrations and population density 
in Paris, Fountoukis et al. (2016) used a three-dimensional regional 
chemical transport model (PMCAMx) to simulate the COA concentra-
tions, and estimated the COA emissions in Paris to be ~80 mg day− 1 

person− 1. The COA emissions in the UK were estimated to be 320 mg 
day− 1 person− 1 and the annual COA emissions to be 7.4 Gg year− 1, 
adding 10% to the national anthropogenic PM2.5 emissions in 2012 (Ots 
et al., 2016). Chinese-style cooking is popular worldwide because of its 
versatile food ingredients, special seasoning, and cooking style, and 

results in different emissions compared with western-style cooking (He 
et al., 2004). To the best of our knowledge, there have been lack of COA 
emission estimations in China. 

The PRD region is highly populated and one of the largest economic 
regions in China. Although PM2.5 concentrations in the PRD region have 
declined in recent years due to emission control strategies (Zhai et al., 
2019), COA emissions could potentially be important emission sources 
due to the high population density in the PRD region. Ye et al. (2019) 
showed that Guangzhou, in the PRD region, was one of the four most 
populous cities in mainland China. The population density in Hong Kong 
was also very high with about 6777 people km− 2 on average (Hua et al., 
2021). 

In this study, we used the AMS-retrieved COA concentrations in 
Hong Kong and Guangzhou and the population density data from the 
LandScan database to produce gridded COA emissions in the PRD region 
(Dobson et al., 2000; Qin et al., 2017; Liu et al., 2019). We added a COA 
tracer in the Weather Research and Forecasting Model coupled with 
Chemistry (WRF-Chem) model, and simulated COA concentrations in 
the PRD region with the updated emission inventory for COA. The 
simulated COA concentrations were compared with observations in 
Hong Kong and Guangzhou by conducting different sensitivity tests with 
respect to the emission inventories, until the model could capture the 
diurnal cycles of observed COA concentrations. The model results were 
then validated with observed COA concentrations at two other sites in 
Shenzhen and Guangzhou. Finally, the total winter COA emissions in the 
PRD region and the effect of COA on the OA concentrations were 
evaluated. 

Fig. 1. WRF-Chem model domain with the popula-
tion density. The black hollow circles denote the 
centers of cities that have ambient monitoring sites, 
and the sizes of the circles denote the number of 
ambient monitoring sites in the cities. The inset 
shows the population density in the PRD region. The 
two blue circles in the inset represents the location of 
the urban roadside site at the Hong Kong Polytechnic 
University (PolyU) (22.30 ◦N, 114.18 ◦E) and Panyu 
Atmospheric Composition station at Guangzhou 
(Panyu) (23.00 ◦N, 113.21 ◦E). The two black circles 
in the inset represent the locations of two urban sites 
in Shenzhen (22.6 ◦N, 113.9 ◦E) and Guangzhou 
(23.08 ◦N, 113.21 ◦E). (For interpretation of the ref-
erences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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2. Methods 

2.1. Model description 

We used the WRF-Chem model developed by Li et al. (2011). The 
model utilized the gas-phase chemical mechanism “Statewide Air 
Pollution Research Center-99” (SAPRC-99), and the aerosol module 
from the “Community Multi-scale Air Quality Model” (CMAQ)/Model 3 
(Binkowski and Roselle, 2003). A volatility basis set (VBS) approach 
with aging was used to simulate OA (Li et al., 2011; Xing et al., 2019). 
Nine surrogate species with saturation concentrations (C*) ranging from 
10− 2 to 106 μg m− 3 were used to represent the semi-volatile POA com-
ponents emitted from the traffic-related emission and biomass burning 
and the fraction of POA emissions for each surrogate species were 
assigned based on the results in Tsimpidi et al. (2010). They were 
assumed to be oxidized by OH with a rate constant of 2 × 1011 cm3 

molec− 1 s− 1 to form the species with reduced volatility of one order of 
magnitude and increased the mass by 7.5% due to the added oxygen. 
SOA formed from each anthropogenic or biogenic precursor was 
calculated by four semi-volatile VOCs with saturation concentrations of 
1, 10, 100, 1000 μg m− 3 and the SOA yields were applied from the re-
sults in Tsimpidi et al. (2010). The heterogeneous reactions glyoxal and 
methylglyoxal from primary emissions and secondary formation on 
aerosol surfaces to form SOA were also included in the model. The COA 
concentrations could not be predicted using the WRF-Chem model 
because this model did not include the chemical species of COA. 
Moreover, COA emissions were not included in the current widely-used 
Multi-resolution Emission Inventory for China (MEIC) (Zheng et al., 
2018). 

Here, a COA tracer was incorporated into the WRF-Chem model. 
Previous studies revealed that COA was semi-volatile and could undergo 
further photochemical reactions, contributing to SOA formation (Liu 
et al., 2017, 2018a, b; Louvaris et al., 2017; Takhar et al., 2019, 2021; 
Zhang et al., 2020), but the volatility distributions of COA varied 
significantly for different cooking oils and experimental conditions 
(Louvaris et al., 2017; Takhar et al., 2019). Two approaches for COA 
were applied in the model. For the NVCOA case serving as the base 
simulation, the COA tracer was assumed to be non-volatile and did not 
evolve chemically, but was incorporated into the total OA mass for the 
calculation of absorptive partitioning of SOA (Ots et al., 2016). For the 
SVCOA case serving as the sensitivity simulation, COA was treated as 
semi-volatile and the volatility distribution followed the results from 
canola oil oxidized by OH in Takhar et al. (2019). They were oxidized by 
OH with a rate constant of 2 × 1011 cm3 molec− 1 s− 1 to form the species 
with reduced volatility of one order of magnitude and increased the 
mass by 7.5% due to the added oxygen. 

Fig. 1 shows the model domain, which included 400 × 400 grid cells 
with the horizontal resolution of 6 km and 35 vertical model layers. The 
parameterization schemes for different processes, including the micro-
physics, longwave and shortwave radiation, the land-surface model, the 
surface layer, and boundary layer scheme were the same as Xing et al. 
(2020). The meteorological and chemical initial and boundary condi-
tions used the National Centers for Environmental Prediction (NCEP) 1◦

× 1◦ reanalysis data (https://rda.ucar.edu/datasets/ds083.2/) and the 
model output from the Model for OZone And Related chemical Tracers 
(MOZART) with 6 h intervals (Horowitz et al., 2003). To estimate COA 
emissions in winter over the PRD region, we simulated the OA and PM2.5 
concentrations from December 27, 2017 to January 15, 2018. The 
spin-up time was 2 days. 

The anthropogenic emission inventory of MEIC, including the agri-
cultural, industrial, power plant, residential, and transportation sectors 
with the base year of 2016, was used in the simulation (Zhang et al., 
2009; Zheng et al., 2018). The Fire Inventory from the National Center 
for Atmospheric Research in US (FINN) was employed for the biomass 
burning emissions (Wiedinmyer et al., 2006, 2011). The FINN inventory 
included the open burning of wildfire, agricultural fires and managed 

burning, but did not include the biofuel use and trash burning. The 
biogenic emissions were calculated online from the Model of Emissions 
of Gases and Aerosols from Nature (MEGAN) module (Guenther et al., 
2006). 

2.2. Observation data 

The OA was measured at an urban roadside site at the Hong Kong 
Polytechnic University (PolyU) (22.30 ◦N and 114.18 ◦E) from 
December 27, 2017 to January 15, 2018 and Panyu Atmospheric 
Composition station in Guangzhou (Panyu) (23.00 ◦N, 113.21 ◦E) from 
November 7, 2014 to January 3, 2015 using a high-resolution time-of- 
flight aerosol mass spectrometer (HR-ToF-AMS, Aerodyne Research 
Incorporated, Billerica, MA). Details of the measurements are described 
in Qin et al. (2017), Liu et al. (2019), and Yao et al. (2021). The 
HR-ToF-AMS was operated with the high sensitivity V-mode and high 
resolution W-mode to get the mean particle mass spectra every 5 min, 
and the relative ionization efficiency for different species were cali-
brated. We calculated the hourly mean data for model validation. The 
PolyU site is located less than 1 km in the east of the Tsim Sha Tsui 
commercial areas with a large number of restaurants, and in the west 
and southwest of the residential areas with numerous buildings and 
restaurants (Yao et al., 2021). The Panyu site is surrounded by resi-
dential neighborhoods (Qin et al., 2017). The contributions of COA to 
OA for both sites were significant (25.4 ± 0.3% at the PolyU site and 
6.5%–9.6% at the Panyu site) due to the intensive emissions. 

To evaluate the model performance, the measured hourly PM2.5 and 
NO2 concentrations over the model domain were downloaded from the 
website of China’s Ministry of Ecological Environment (http://www.aqi 
study.cn/). The monitoring sites are shown in Fig. 1. 

2.3. OA source apportionment 

Positive matrix factorization (PMF) analysis was employed to the 
mass spectra from the AMS measurement to resolve the different OA 
factors (Qin et al., 2017; Liu et al., 2019). For the PolyU site, five factors 
were identified, including two primary emission-dominated factors 
(hydrocarbon-like OA (HOA) and COA), and three oxygenated factors 
(OOA1, OOA2, and OOA3) associated with different oxidation levels. 
For the Panyu site, the resolved OA factors included three 
primary-dominated factors (HOA, COA, biomass-burning-related OA 
(BBOA)), and two oxygenated factors (SVOOA and LVOOA). We used 
the analyzed COA concentrations for the PolyU and Panyu sites to 
validate model results and estimate COA emissions. 

The diurnal profiles of COA concentrations at two urban sites in 
Shenzhen (113.90 ◦E, 22.60 ◦N) and Guangzhou (113.21 ◦E, 23.08 ◦N) 
in winter, respectively (Cao et al., 2018; Guo et al., 2020) were used to 
evaluate the simulated COA concentrations at the two sites based on the 
estimated COA emissions. 

2.4. Estimation of COA emissions 

The COA emissions over the model domain were estimated using 
population density and observed diurnal profiles of COA concentrations 
at the PolyU and Panyu sites following the method from Ots et al., 
(2016). Fig. 1 shows the population density for 2017 from the LandScan 
dataset. We estimated the spatiotemporal distribution of COA emissions 
based on the population density, observed diurnal profiles of COA 
concentrations at the PolyU and Panyu sites on the assumption that the 
daily per capita cooking emission value was 320 mg day− 1 person− 1 (Ots 
et al., 2016). We then compared the simulated COA concentrations from 
the NVCOA and SVCOA simulations with the observations at the PolyU 
and Panyu sites. Based on the difference of simulated and observed COA 
concentrations at the PolyU and Panyu sites, we adjusted the daily per 
capita cooking emission value and hourly COA emission percentages 
multiple times, until the model could reproduce the magnitude and 
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variations of observed COA concentrations at the PolyU and Panyu sites. 

2.5. Statistical indexes for model evaluation 

We employed four numerical metrics to evaluate model results: the 
normalized mean bias (NMB), index of agreement (IOA), mean frac-
tional bias (MFB), and mean fractional error (MFE). 

NMB=
1
N

∑N
i=1(Pi − Oi)

O
× 100% (1)  

IOA= 1 −

∑N
i=1(Pi − Oi)

2

∑N
i=1(|Pi − O| + |Oi − O|)

2 (2)  

MFB=
1
N

∑N

i=1

(Pi − Oi)

(Oi + Pi/2)
(3)  

MFE =
1
N

∑N

i=1

|Pi − Oi|

(Oi + Pi/2)
(4)  

where Pi and Oi represent the simulated and observed concentrations of 
the chemical species i, respectively, N is the number of model and 
observation data used for comparisons, O is the mean observed con-
centration, and IOA represents the level of consistency between the 

model and the observation. MFB and MFE were used for the particulate 
matter validation of model performance. The model performance goal 
was set to be met when both the MFB and MFE were lower than ±30% 
and +50%, respectively. The MFB ≤75% and MFE ≤60% also met the 
model performance criteria for less abundant species, as they had less 
stringent goals and criteria for model evaluation (Boylan and Russell, 
2006). 

3. Results and discussion 

3.1. Model validation 

Fig. 2a and Fig. 2b show the temporal variations of the simulated and 
observed PM2.5 and NO2 concentrations averaged over all monitoring 
sites in the model domain, respectively. The model generally reproduced 
the temporal change of PM2.5 concentrations, but predicted more 
distinct variations than those of the observations. The NMB and IOA 
were 9.38% and 0.72, respectively. The MFB and MFE for PM2.5 were 
11.24% and 16.28%, which were acceptable for model performance 
(Boylan and Russell, 2006). The model also reproduced the temporal 
variation of NO2 concentrations, with NMB and IOA to be 3.54% and 
0.87, respectively, showing a good representation of NO2 emission in the 
MEIC emission inventory over the model domain. 

Fig. 2c and Fig. 2d present the temporal variations of the simulated 

Fig. 2. Comparisons of observed (black dots) and simulated (red lines) temporal variations of (a) PM2.5 concentrations and (b) NO2 averaged at the ambient 
monitoring sites, (c) HOA concentrations, (d) SOA concentrations, (e) Temperature, and (f) wind speed at the PolyU site from December 27, 2017 to January 15, 
2018. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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and observed HOA and SOA concentrations at the PolyU site. The model 
reproduced the diurnal variations of HOA at the PolyU site, particularly 
from January 4 to 15, 2018 (Fig. 2c). The HOA was mainly associated 
with traffic emissions and showed a distinct peak during the morning 
rush hours, while the HOA concentrations during the evening rush hours 
were not as high as that of the morning rush hours. The NMB and IOA for 
HOA were − 5.62% and 0.70, respectively. The MFB and MFE for HOA at 
the PolyU site were 0.24% and 46.23%, which met the criteria for the 
acceptance for model performance (Boylan and Russell, 2006). The 
model simulated the relatively high-observed SOA concentrations dur-
ing the first half of the simulation periods, and the relatively low SOA 
concentrations during the later periods (Fig. 2d). The SOA simulation 
results were inferior to those of HOA, with NMB and IOA to be − 13.05% 
and 0.48, respectively. The MFB and MFE for SOA at the PolyU site were 
8.08% and 37.81%, which were also acceptable for model performance 

(Boylan and Russell, 2006). Fig. 2e and Fig. 2f presented the observed 
and simulated near-surface temperature and wind speed at the PolyU 
site. The model generally reproduced the temporal variations of tem-
perature at the PolyU site and captured the sharp cooling on January 8, 
2018, but the model tended to underestimate the near-surface temper-
ature during most time of the simulation period. The model slightly 
overestimated the observed wind speed at the PolyU site for most of the 
time, partly caused by the coarse horizontal resolution of 6 km. The 
PolyU site is located less than 1 km from the Victoria Harbor and there 
are both sea and land within the 3 km circle of the PolyU site, but the 
model could not resolve the difference surrounding the site. 

3.2. Diurnal cycles of COA 

We further explored the diurnal variations of COA at the PolyU and 

Fig. 3. The diurnal cycles of observed (black dots) and simulated (red and blue lines) COA concentrations on weekdays ((a) PolyU site and (c) Panyu site) and 
weekends ((b) PolyU site and (d) Panyu site). The solid and dashed lines denote the NVCOA and SVCOA cases, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. The diurnal variations of observed (black dots) and simulated (solid line: NVCOA, dashed line: SVCOA) COA concentrations at (a) Shenzhen and 
(b) Guangzhou. 
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Panyu sites on weekdays and weekends. The observed COA concentra-
tions on the weekdays had two distinct peaks during lunchtime 
(12:00–14:00 local time) and dinnertime (19:00–21:00 local time) for 
both the PolyU and Panyu sites, with maximum concentrations of 2.0 
and 1.3 μg m− 3 during lunchtime and 2.5 and 3.0 μg m− 3 during 
dinnertime, respectively (Fig. 3a and Fig. 3c). The relatively high ratio of 
COA concentrations during lunchtime over that during dinnertime at the 
PolyU site indicated that the PolyU site was close to commercial areas 
with large COA emissions from restaurants during lunchtime and 
dinnertime, while the relatively low ratio at the Panyu site reflected that 
the Panyu site was surrounded by the residential areas with low COA 
emissions from family cooking during lunchtime. The observed weekend 
COA concentrations presented one peak during dinnertime, with a 
maximum concentration of 3.2 and 4.4 μg m− 3 (Fig. 3b and Fig. 3d), 
which were significantly higher than that on weekdays, while the COA 
concentrations during lunchtime on weekends did not show an obvious 
increase. The daily mean COA concentration during weekends was 1.4 
μg m− 3 and 1.6 μg m− 3 for the PolyU and Panyu sites, which were higher 
than those of 1.1 μg m− 3 and 1.3 μg m− 3 on weekdays. The model 
simulations for both the NVCOA and SVCOA cases were fitted to capture 
the diurnal variations of COA on weekdays and weekends for the PolyU 
and Panyu sites. 

To further validate the estimated COA emissions, we compared the 
simulated COA concentrations with observations at two urban sites in 
Shenzhen (113.90 ◦E, 22.60 ◦N) and Guangzhou (113.21 ◦E, 23.08 ◦N) 
in winter, respectively (Cao et al., 2018; Guo et al., 2020). Fig. 4a 
showed that the model generally underestimated the observed COA 
concentrations in Shenzhen for the whole day, except that the SVCOA 
case overestimated the COA concentrations during dinnertime. The MFB 
and MFE for COA at the Shenzhen site were − 48.88% and 50.05% for 
the NVCOA case, while the MFB and MFE for the SVCOA case were 
− 43.45% and 55.87%, respectively. The model performance at the 

Shenzhen site met the model performance criteria. Fig. 4b showed that 
the model generally captured the diurnal variations of COA concentra-
tions at the Guangzhou site, and the simulated COA concentrations for 
the SVCOA case were lower than those from the NVCOA case. The 
simulated contribution of COA to OA were 20.8% and 14.8% for the 
NVCOA and SVCOA cases, respectively, which were comparable with 
the observed OA mass fractions of 18% (Guo et al., 2020). The MFB and 
MFE for COA at the Guangzhou site were 10.05% and 24.53% for the 
NVCOA case, and − 28.96% and 31.82% for the SVCOA case, respec-
tively, which met the model performance criteria for less abundant 
species. In conclusion, the model performance for the COA simulation in 
Shenzhen and Guangzhou was acceptable, and the model results were 
useful for estimating COA emissions over the PRD region. 

3.3. Hourly and spatial distributions of COA emissions 

Based on the minimal difference between the simulated and 
observed COA concentrations at the PolyU and Panyu sites, the best 
estimation of daily per capita COA emissions over the PRD region on 
weekends were 209 mg day− 1 person− 1 and 152 mg day− 1 person− 1 for 
the NVCOA and SVCOA case, respectively, while they were 149 mg 
day− 1 person− 1 and 190 mg day− 1 person− 1 on weekdays. The daily per 
capita COA emissions over the PRD region were lower than that in the 
UK (Ots et al., 2016), but higher than that in France (Fountoukis et al., 
2016). This was probably caused by the differences in cooking styles. 
The most popular Cantonese cooking style in the PRD region is usually 
frying, stewing, or braising, while in the UK it is grilling, frying, or even 
deep-frying, all of which produce higher OA emissions (Ots et al., 2016). 
Figure S1 shows the diurnal variations of COA emission percentages on 
weekdays and weekends in the PRD region. The diurnal cycles of COA 
emission percentages for the NVCOA and SVCOA cases were similar, 
except that the variations for the NVCOA case were smaller than those 

Fig. 5. The spatial distributions of (a, c) COA emissions, (b, e) COA concentrations, and (c, f) COA mass fractions to OA over the PRD region averaged from December 
27, 2017 to January 15, 2018. The top and bottom panels denote the results from the NVCOA and SVCOA cases, respectively. The data outside the PRD region are 
not shown. 
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for the SVCOA case. For the NVCOA case, COA emission percentages 
during dinnertime were the highest on both weekdays and weekends, 
accounting for 31.8% and 28.3% of total daily COA emissions on 
weekdays and weekends, respectively. The COA emission percentages 
during lunchtime were 24.4% and 24.5% on weekdays and weekends, 
respectively. The COA emissions between the lunchtime and dinnertime 
were much higher on weekends than those on weekdays, reflecting that 
people have more casual time for eating on weekends, higher back-
ground concentrations of COA, and/or more emissions from restaurant 
dining than those during weekdays. 

Fig. 5 demonstrates the spatial distributions of the estimated COA 
emissions, modeled COA concentrations, and COA mass fractions to OA 
for the NVCOA and SVCOA cases averaged over the simulation period in 
the PRD region. The high COA emissions (exceeding 30.0 × 103 g km− 2 

month− 1) originated in the central areas of the PRD region due to the 
high population density, particularly in the city centers, with emissions 
higher than 80 × 103 g km− 2 month− 1 (Fig. 5a and 5d). The COA 
emissions in the marginal areas of the PRD region were significantly 
lower and generally did not exceed 10.0 × 103 g km− 2 month− 1. The 
total COA emissions in winter over the PRD region were estimated to be 
3.5 × 108 g month− 1 for the NVCOA case and 3.8 × 108 g month− 1 for 
the SVCOA case. The total primary organic carbon emissions in winter 
over the PRD region from the MEIC emission inventory were 6.1 × 108 g 
month− 1 (Zheng et al., 2018). The COA emissions based on the NVCOA 
and SVCOA cases added 34.8% and 37.8% to the total primary OA 
emissions (multiplied by OM/OC ratio of 1.65) (Xing et al., 2013), 
thereby making up an important source of primary OA during winter-
time over the PRD region. The simulated COA concentrations were also 
at a high level in the central area of the PRD region (Fig. 5b and 5e). The 
COA emissions and concentrations in Guangzhou were the highest over 
the PRD region, exceeding 160.0 × 103 g km− 2 month− 1 and 2.0 μg m− 3, 
respectively. Unlike the relatively high COA emissions in Dongguan, 
Shenzhen, and Hong Kong, that are located in the southeast of 
Guangzhou, the simulated COA concentrations in Foshan, Zhongshan, 
and Zhuhai in the southwest of Guangzhou were higher than those in the 
southeast of Guangzhou. The simulated COA concentrations and mass 

fractions from the SVCOA case were higher than those from the NVCOA 
case. The land-use data in 2018 from the remote sensing images of 
Landsat 8 was used to identify the urban areas in the PRD region 
(http://www.resdc.cn, Figure S2). On the daily average in the urban 
areas of the PRD region in winter, the COA concentration was 0.7 μg m− 3 

and 0.9 μg m− 3 for the NVCOA and SVCOA cases, respectively, 
contributing 5.1% and 6.9% to the urban OA concentrations. The COA 
concentration and contribution to OA in the urban areas were signifi-
cantly higher than those of 0.35 μg m− 3 and 3.2% contribution for the 
NVCOA case and 0.51 μg m− 3 and 4.7% contribution for the SVCOA case 
over the entire PRD region. 

3.4. The impact of COA emissions on SOA concentrations 

Since COA was incorporated into the total OA mass for the absorptive 
partitioning of POA and SOA, the added COA emissions would affect the 
OA concentrations over the PRD region. We evaluated the impact of 
COA emissions on OA concentrations by conducting a sensitivity simu-
lation turning off the COA emissions. Fig. 6 shows the diurnal variations 
of observed and simulated OA concentrations at the PolyU and Panyu 
sites. Fig. 6a shows that OA concentrations at the PolyU site in the 
morning and afternoon were relatively high and could be up to 7.0 μg 
m− 3, while the OA concentrations at night were the lowest (4.6 μg m− 3). 
The model generally captured the diurnal profile of OA concentrations 
at the PolyU site, but tended to overestimate OA concentrations for all 
three simulations. On the daily average, considering COA emissions in 
the model increase OA concentrations at the PolyU site by 1.4 μg m− 3 for 
both the NVCOA and SVCOA cases. Fig. 6b presents that OA concen-
trations at the Panyu site were high at night and low during daytime. 
The model reproduced the diurnal profile of OA concentrations at the 
Panyu site, although it overestimated OA concentrations in the morning. 
Considering COA emissions increased the OA concentrations at the 
Panyu site by 1.7 μg m− 3 for the NVCOA case and 1.6 μg m− 3 for the 
SVCOA case, respectively. Considering COA emissions led to better 
agreement between the model and observations, with IOA increased 
from 0.53 for the case without COA emissions to 0.73 for the NVCOA 

Fig. 6. The diurnal cycles of observed (black dots) and simulated (blue lines: without COA emissions, red solid lines: NCVOA, red dashed lines: SVCOA) OA con-
centrations at the (a) PolyU site and (b) Panyu site. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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case and 0.68 for the SVCOA case. 
Fig. 7 presents the effect of COA emissions on OA concentrations 

averaged from December 27, 2017 to January 15, 2018. Including COA 
emissions in the model enhanced OA concentrations over the whole PRD 
region by 0–3 μg m− 3 and the enhancement was higher from the SVCOA 
case than that from the NVCOA case. On the regional average, consid-
ering COA emissions in the model increased OA concentrations by 0.5 
μg m− 3 for the NVCOA case and 0.8 μg m− 3 for the SVCOA case, 
respectively, enhancing 4.6% and 7.4% of the total OA mass. 

4. Conclusions 

In this study, COA emissions were estimated during winter over the 
PRD region using two approaches assuming COA to be non-volatile and 
semi-volatile, respectively. The best estimation of COA emissions in 
winter over the PRD region was 3.5 × 108 g month− 1 for the NVCOA 
case and 3.8 × 108 g month− 1 for the SVCOA case, adding 34.8% and 
37.8% to the total primary OA emissions. The results indicate that COA 
emissions over the PRD region during winter are important primary OA 
sources. The mean COA concentration during winter over the urban 
areas of PRD region was 0.7 μg m− 3 and 0.9 μg m− 3 for the NVCOA and 
SVCOA cases, contributing 5.1% and 6.9% to the total OA concentra-
tions. Considering COA emissions in the model increased the simulated 
OA concentrations by 4.6% and 7.4% to the total OA concentrations on 
the PRD regional average, which would potentially play an important 
role for narrowing the gap between the model and observed OA 
concentrations. 

The estimated higher COA emissions, higher COA concentrations, 
and higher enhancement for OA concentrations based on the SVCOA 
case than those from the NVCOA case indicated the importance for 
treating COA as semi-volatile in the model. Given that laboratory studies 
have shown that VOCs from cooking also contribute to SOA formation 
and the volatility distributions of COA from different cooking activities 
may vary significantly, further studies are needed to parameterize the 
aging rates and SOA formation from primary COA emissions, so that the 
model can accurately simulate both POA and SOA concentrations from 
cooking activities. 
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