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H I G H L I G H T S  

• An OSSE is configured using two independent chemical transport models. 
• The benefit of GEMS geostationary satellite observations is evaluated. 
• Assimilating GEMS data improves near-surface ozone simulation in urban areas. 
• Improvement in the middle to upper tropospheric ozone simulation is achieved.  

A R T I C L E  I N F O   

Keywords: 
Ozone 
GEMS 
OSSE 
Data assimilation 

A B S T R A C T   

The Geostationary Environment Monitoring Spectrometer (GEMS) is the world’s first air quality instrument in 
the geostationary (GEO) orbit to monitor trace gases and aerosols at an unprecedented spatial and temporal 
resolution over East Asia, shedding light on the gradually alarming ozone pollution contrary to declining pre
cursor emissions in this region. Here we use synthetic GEMS ozone profiles through the Observing System 
Simulation Experiment (OSSE) for evaluating the benefit of GEMS hourly measurements on chemical data 
simulation based on a Kalman filter technique. Assimilating synthetic GEMS data improves surface ozone 
simulation as its root-mean-square error (RMSE) is reduced by 7.2–19.2% over major urban areas in East Asia, 
along with a more accurate (6.3–29.2%) capturing of high-ozone events. The assimilation also better represents 
ozone vertical distributions in the middle to upper troposphere and better captures stratospheric intrusion 
events, with an RMSE reduction of 18.2–49.2% between 200 and 300 hPa. Our OSSE study offers a valuable 
reference for future ozone simulations, especially when massive observations become available in the coming era 
of GEO satellites.   

1. Introduction 

Ozone pollution is alarming in the populous East and Southeast Asia 
(Chang et al., 2017; Lu et al., 2018; Ziemke et al., 2019), posing sig
nificant threats to public health and the ecosystem (Monks et al., 2015; 
Yue et al., 2017). Optional ozone observations in this region, however, 

remain inadequate, even non-existent in some areas, thus preventing the 
community from fully understanding and effectively mitigating its 
ozone pollution. As the world’s first geostationary (GEO) air quality 
monitoring satellite instrument, the Geostationary Environment Moni
toring Spectrometer (GEMS) (Kim et al., 2020) offers unprecedented 
opportunities to fill the observational gaps over this region with hourly 
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measurements of ozone and its precursors in the daytime. Here we 
demonstrate and quantify the benefit of GEMS hourly observations on 
improving ozone simulations in East and Southeast Asia through the 
Observing System Simulation Experiment (OSSE) (Timmermans et al., 
2015; Claeyman et al., 2011; Zoogman et al., 2011, 2014a, 2014b; 
Quesada-Ruiz et al., 2020), setting the stage for future applications of 
GEO observations for air quality management. 

East and Southeast Asia have been facing a worsening ozone problem 
in the last decade (Chen et al., 2021). Observations from the surface 
network reveal a steady increase (~ 4–8% yr− 1) in daily maximum 8-h 
average (MDA8) ozone concentrations in China (Han et al., 2020; Dang 
et al., 2021; D. Gao et al., 2021), along with more frequent high-ozone 
events from 2013 to 2020 (Gong et al., 2020; Shu et al., 2016, 2020). 
Nationwide, Chinese summertime MDA8 ozone ramps up at a rate of 5% 
yr− 1 from 2013 to 2019 (Lu et al., 2020). In South Korea, the annual 
mean surface ozone increases in all administrative districts from 2001 to 
2018 (by 0.3–1.7 ppbv yr− 1) (Yeo et al., 2021). Previous studies also 
reported the elevated MDA8 ozone exceeding 50 ppbv over the Indo
chinese peninsula and downstream areas due to biomass burning (Yadav 
et al., 2017; Marvin et al., 2021). 

Chemical transport models (CTMs) have been widely used to un
derstand non-linear ozone chemistry. But applications in Asia conclude 
that various factors, such as meteorological fields, chemical initial and 
boundary conditions, emission inventories, or chemical mechanisms, 
could all potentially lead to biased ozone simulations (M. Gao et al., 
2020; J. Li et al., 2019; Shu et al., 2020). For example, the modeled 
annual mean surface ozone from 14 state-of-the-art CTMs within the 
framework of the Model Inter-Comparison Study for Asia Phase III 
(MICS-Asia III) is biased by − 0.5 to 1.2 ppbv in the North China Plain, 
− 0.6 to 0.7 ppbv in the Pearl River Delta, and − 0.3 to 0.3 ppbv in the 
northwestern Pacific and Japan (J. Li et al., 2019). 

Data assimilation is an effective tool to improve the simulations of 
surface and tropospheric ozone (Bocquet et al., 2015; Wu et al., 2008; 
Huang et al., 2015; Miyazaki et al., 2012, 2020; Parrington et al., 2008, 
2009; Inness et al., 2015, 2019), as well as the forecasting of surface 
ozone (Tang et al., 2011; Peng et al., 2018; Ma et al., 2019). These 
assimilation applications largely utilize the spatially and temporally 
continuous observations from the low Earth orbit (LEO) (Huang et al., 
2015; Miyazaki et al., 2012, 2020; Inness et al., 2015, 2019), such as 
Ozone Monitoring Instrument (OMI) (Levelt et al., 2018) and TROPO
spheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012). For 
example, assimilation of LEO satellite observations results in a 
root-mean-square error (RMSE) reduction of 34–54% at the surface 
(Zoogman et al., 2011), an absolute bias reduction of ~ 25–30% in the 
mid-troposphere (Parrington et al., 2008), and a reduced bias from 
30–40% to < 10% in the middle and upper troposphere (Miyazaki et al., 
2012). 

Monitoring air quality from space is entering a new era of GEO sat
ellites with the capabilities of observing the diurnal variations of trace 
gases and aerosols for the first time. A virtual GEO constellation, con
sisting of GEMS (over Asia), Tropospheric Emissions: Monitoring of 
Pollution (TEMPO; North America) (Zoogman et al., 2017), and 
Sentinel-4 (Europe) (Ingmann et al., 2012), would facilitate air quality 
monitoring over the major polluted and industrialized regions of the 
Northern Hemisphere, enabling a massive flow of observations for air 
quality applications, including data assimilation. 

OSSE is a practical tool for evaluating the potential of proposed 
ozone observations from a new instrument to be added to an existing 
observing system, which has been applied to TEMPO (Zoogman et al., 
2014a, 2014b) and Sentinel-4 (Quesada-Ruiz et al., 2020). Zoogman 
et al. (2014a) demonstrated the improved monitoring capability of 
ozone exceedances in the United States Intermountain West through 
assimilating TEMPO measurements - capturing 82% of the spatial dis
tribution of high-ozone events. Quesada-Ruiz et al. (2020) similarly 
reported the added value of the Sentinel-4 observations on tropospheric 
ozone over Europe, suggesting an RMSE reduction of up to 20% in the 

middle to upper troposphere. Bak et al. (2013, 2019) demonstrated that 
GEMS could measure tropospheric ozone with an accuracy comparable 
to OMI, but stratospheric ozone with slightly worse performance than 
OMI due to the insufficient spectral information below ~ 300 nm. Here 
we demonstrate and quantify the improvement in surface and tropo
spheric ozone simulation in East Asia via assimilating GEMS hourly 
ozone profile observations with the OSSE approach and two indepen
dent CTMs, as described below. 

2. Observing System Simulation Experiment (OSSE) 

Fig. 1 outlines our OSSE framework that mainly involves the 
following steps. (1) In the nature run, we use the Weather Research and 
Forecasting model coupled with Chemistry (WRF-Chem) (Grell et al., 
2005) to construct the “true” atmosphere. Here we select August 2019 as 
the study period to represent summertime ozone pollution in Asia. (2) 
We sample the “true” atmosphere according to GEMS’s schedule (01–08 
UTC used in this study) and retrieve hourly ozone profiles (denoted as 
synthetic GEMS observations) following an optimal estimation (OE) 
algorithm (Rodgers, 2000). (3) In the control run, we use an independent 
global CTM GEOS-Chem (Bey et al., 2001; Park et al., 2004; Mao et al., 
2013) to generate a priori ozone estimates. The independence of two 
different CTMs in various aspects (Sections 2.1 and 2.3) ensures the 
robustness of the OSSE. (4) Finally, in the assimilation run, we assimilate 
the synthetic GEMS observations into GEOS-Chem to obtain the optimal 
(a posteriori) estimates. By comparing paired differences between these 
two simulations (control and assimilation run) and the “true” atmosphere, 
we quantify the benefit of knowledge contributed by GEMS observa
tions. The following sections provide details in each step. 

2.1. Constructing the “true” atmosphere 

To generate the “true” atmosphere, we use the WRF-Chem model 
(version 4.1), which has been previously applied in reproducing sum
mertime ozone pollution in Asia (M. Gao et al., 2020; J. Li et al., 2019). 
We adopt a two-nested modeling domain (centered at 35◦N, 103◦E) 
covering most of East Asia (60 km × 60 km, not shown) with a nested 
grid resolution of 20 km × 20 km (shown in Fig. 2) and 34 vertical layers 
extending from the surface to 50 hPa. The meteorological initial and 

Fig. 1. Flowchart of the Observing System Simulation Experiment (OSSE) for 
assimilation of GEMS hourly ozone profile observations. Modified from Bras
seur and Jacob (2017). 
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boundary conditions are from the National Centers for Environmental 
Prediction (NCEP) Final (FNL) operational global analysis (https://rda. 
ucar.edu/datasets/ds083.3) with a temporal resolution of 6 h and a 
spatial resolution of 0.25◦ × 0.25◦. The chemical initial and boundary 
conditions are from the Whole Atmosphere Community Climate Model 
(WACCM) (Gettelman et al., 2019) model 6 h outputs (https://www. 
acom.ucar.edu/waccm/download.shtml). 

Emissions in the nature run are from state-of-the-art inventories. 
Specifically, anthropogenic emissions within China are prepared using 
the 0.25◦ × 0.25◦ Multi-resolution Emission Inventory for China (MEIC; 
http://www.meicmodel.org) (Zheng et al., 2018) in 2016 and scaled to 
the simulation year of 2019 according to their relative changes since 
2013. Outside China, the associated emissions are from the Emissions 
Database for Global Atmospheric Research-Hemispheric Transport of 
Air Pollution (EDGAR-HTAP) (Janssens-Maenhout et al., 2015) for the 
year of 2010 at the 0.1◦ × 0.1◦ resolution. Biogenic emissions are 
calculated online using the Model of Emissions of Gases and Aerosols 
from Nature (MEGAN) (Guenther et al., 2012). Fire emissions are from 
Fire INventory from NCAR (FINN) version 1.5 (Wiedinmyer et al., 
2011). We select the CBMZ chemical mechanism (Zaveri et al., 1999) for 
gas-phase chemistry and the MOSAIC aerosol scheme configured with 4 
sectional aerosol bins (Zaveri et al., 2008). The simulation period spans 
from 29 July to 31 August 2019, with a spin-up time of 64 h and a 
temporal resolution of 1 h. 

Comparing with surface observations over China indicates that the 
“true” atmosphere from the nature run reproduces the spatial distribu
tion of observed MDA8 ozone concentrations in August 2019, with a 
spatial correlation coefficient (r) of 0.82 and a mean bias of +6.5 ppbv 
(relative bias of +11.3%) over 337 cities (Fig. S1). The “true” atmo
sphere shows elevated MDA8 ozone and frequent high-ozone events 
(here and elsewhere defined as surface MDA8 ozone exceeding 90 ppbv) 
over regions with intensive anthropogenic emissions (Fig. 2a–c), such as 
eastern China and the Sichuan Basin (SCB). Fig. S2 further illustrates the 
overall consistency between simulated surface ozone with hourly ob
servations in terms of temporal variations, as well as between simulated 

ozone profiles with ozonesonde measurements. As such, we conclude 
that the “true” atmosphere is representative of the real atmosphere, at 
least to a large degree, with realistic model errors dedicated to the 
robustness of the OSSE. 

2.2. Synthetic GEMS observations 

The GEMS instrument is an ultraviolet (UV) and visible (Vis) imaging 
spectrometer onboard the Geostationary Korea Multi-Purpose satellite 
(Geo-KOMPSAT)-2B launched on 18 February 2020. It collects hourly 
daytime measurements of ozone, nitrogen dioxide, sulfur dioxide, 
formaldehyde, and aerosols over East Asia (5◦S–45◦N in latitude and 
75–145◦E in longitude) with a temporal resolution of 8 times per day (at 
least) and a spatial resolution of 7 × 8 km2 (at Seoul). 

Since GEMS science data products are not released yet, here ozone 
profiles for the daytime period (01–08 UTC) are simulated from GEMS 
synthetic measurements with a similar approach to the GEMS standard 
ozone profile algorithm (Bak et al., 2013, 2021) based on the OE method 
(Rodgers, 2000). In this experiment, the OE problem is linearly formu
lated as follows without doing actual iterative non-linear retrievals. 

x̂ = xap + A(xt–xap) + ε̂ (1)  

where 

A = (KT S–1
y K + S–1

a )
–1KT S–1

y K = ŜKT S–1
y K = GK (2)  

ε̂ = Gεy (3) 

The retrieval of x (x̂) is considered as a linear combination of the true 
state (xt, from WRF-Chem outputs) and a priori (xap), weighted by the 
measurement error covariance matrix Sy and the a priori error covari
ance matrix Sa. The averaging kernel matrix A ≡ ∂x̂/∂xt, used as a 
weighting term, represents the sensitivity of retrievals to the “true” at
mosphere. G ≡ ∂x̂/∂y describes the sensitivity of retrievals to radiances 
(y), while K ≡ ∂y/∂xt is the sensitivity of radiances to the “true” 

Fig. 2. Monthly mean values of the daily maximum 8-h average (MDA8) ozone at the surface (a, d) and 850 hPa (b, e), and the number of high-ozone events (defined 
as surface MDA8 ozone exceeding 90 ppbv; c, f) in August 2019. The top panels are from the “true” atmosphere constructed with WRF-Chem in the nature run (Section 
2.1). The bottom panels show the a priori estimates from the GEOS-Chem control run (Section 2.3). WRF-Chem outputs are regridded onto the 0.5◦ × 0.625◦ GEOS- 
Chem grids. 
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atmosphere. Each diagonal element of A is a degree of freedom for signal 
(DFS), quantifying the number of independent pieces of information 
available at that layer from radiance measurements. (A–I)(xt–xap) and ε̂ 
represent the smoothing error and random-noise error, respectively. I is 
the identity matrix. The root sum square of these two retrieval errors 

represents the solution error (
̅̅̅
Ŝ

√
). 

The state vector consists of the ozone profiles at 24 layers, surface 
albedo, and cloud fraction. The pressure level grid is set at Pi = 2– i

2 atm 
for i = 0 to 23 (1 atm = 1013.25 hPa) and with the top of the atmosphere 
set for P24 (~ 65 km), resulting in ~ 2.5 km-thick for each layer. To 
complete the “true” ozone profiles, WRF-Chem-based “true” atmosphere 
(Section 2.1) is exploited and extended with GEOS-Chem outputs (Sec
tion 2.3) above ~ 50 hPa due to the top pressure limit of the WRF-Chem 
simulations and then are spatially and temporally nested onto the GEMS 
full central scan scenario according to Kim et al. (2020). Moreover, the 
native spatial resolution is downgraded by 4 × 4 binning, in line with the 
GEMS science data processing plan to reduce measurement noise and 
computational budget. 

The surface albedo is defined based on the Earth surface reflectivity 
climatology at 347 nm from OMI data (Kleipool et al., 2008). Ozone a 
priori state vector (xap) and corresponding error covariance matrix (Sa) 
are taken from the climatological dataset of monthly zonal mean ozone 
profiles (McPeters and Labow, 2012). ε̂ is comprised of the retrieval 
errors due to measurement random-noise errors simulated through the 
GEMS signal-to-noise model developed by Ball aerospace. 

The weighting functions of radiance observations with respect to 
elements in the state vector are simulated to define A and G matrices. 
The GEMS observations include ultraviolet and visible wavelengths from 
300 to 500 nm with 0.2 nm spectral sampling and about 0.6 nm full- 

width at half-maximum (FWHM) resolution. The spectral range of 
300–340 nm is targeted for ozone profile retrievals, and hence 200 in
dividual wavelengths are required to be simulated per one pixel. A 
lookup-table approach is employed to simulate GEMS spectra to reduce 
the computational cost. The version 2.8 Vector Linearized Discrete 
Ordinate Radiative Transfer (VLIDORT) (Spurr, 2006) model is used as 
the radiative transfer model. We followed the recipe introduced in Bak 
et al. (2021) to create the lookup tables, except that the high-resolution 
input spectra (ozone cross-section, Rayleigh scattering coefficient, and 
solar reference spectrum) is convolved with the GEMS slit function 
assumed to be the standard Gaussian before running the radiative 
transfer model. 

The averaging kernels and retrieval errors are shown in Fig. S3 to 
characterize the GEMS ozone profile retrieval. It illustrates that GEMS 
provides no measurement information for the upper atmospheric layers 
above ~ 2 hPa (DFS is close to zero), and hence retrievals are almost 
determined by the a priori information. However, the retrieval quality is 
significantly better than a priori information for representing the 
stratosphere and troposphere, with the DFS value of 0.2–0.3 at each 
layer, providing sufficient information to resolve the ozone layer in the 
middle stratosphere. On the other hand, the tropospheric ozone vari
ability is significantly smoothed out. 

Nevertheless, the capabilities of GEMS in sensing the hot spots of 
ozone pollution over Northeast Asia and its chemical evolution are 
promising, as seen from Fig. 3, where GEMS retrievals at the surface 
layer are mapped on 16 August 2019 for 02, 04, 06, and 08 UTC, 
respectively. Fig. 4 compares the diurnal changes of monthly ground- 
level ozone between GEMS and the “true” atmosphere for August, but 
at three selected cities with high ozone concentrations (Fig. 3). It illus
trates a better retrieval sensitivity at local time noon and lower latitude 

Fig. 3. GEMS surface-layer ozone partial column throughout the day (02, 04, 06, and 08 UTC) on 16 August 2019. The hollow triangles show the locations of Beijing 
(40.1◦N, 116.2◦E), Shanghai (31.3◦N, 121.3◦E), and Seoul (37.0◦N, 127.5◦E). 
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where solar zenith angle reaches its minimum value. GEMS observations 
generally match well with the “true” atmosphere at three cities, while 
the DFS values are much higher at Shanghai (Fig. 4b,d,f). We attribute 
this to the impact of a priori information on OE-based retrievals. The 
climatological a priori ozone value is ~ 10 DU at the surface layer, 
significantly lower than the “true” values, leading to significant retrieval 
biases at Shanghai (Fig. S3). 

2.3. Control run with GEOS-Chem 

We use a nested version of the GEOS-Chem (version 12.9.3; http: 
//www.geos-chem.org) as the forward model in data assimilation. 
GEOS-Chem is a global 3-D CTM with a detailed HOx-NOx-VOC-ozone- 
aerosol-halogen tropospheric chemistry mechanism (Bey et al., 2001; 
Park et al., 2004; Mao et al., 2013) and has been widely applied in ozone 
simulations (Zoogman et al., 2014a; Dang et al., 2021; Gong et al., 
2020). The nested simulation over Asia (11◦S–55◦N, 60–150◦E) is at a 
resolution of 0.5◦ × 0.625◦ with 47 vertical layers up to 0.1 hPa and 
boundary conditions updated every 3 h from a global 2◦ × 2.5◦ simu
lation. The global and nested simulations have a respective spin-up time 
of 1 year and 3 months, both driven by Modern-Era Retrospective 
Analysis for Research and Applications, Version 2 (MERRA-2) meteo
rological fields (Gelaro et al., 2017). Global anthropogenic emissions are 
from the Community Emissions Data System (CEDS) (Hoesly et al., 
2018), substituted by MIX inventory (M. Li et al., 2017) over Asia. 
Biogenic emissions are calculated online using MEGAN (Guenther et al., 
2012). Biomass burning emissions are from the fourth-generation Global 
Fire Emissions Database (GFED4) (Giglio et al., 2013). 

Compared with WRF-Chem simulations (Section 2.1), here we 
configure GEOS-Chem as differently as possible in meteorological fields, 
chemical mechanisms, and emission inventories to maximize its inde
pendence, which is critical for the proper interpretation of OSSE results 
as previously stated. Fig. 2d,e shows the a priori near-surface MDA8 
ozone from the control run, which is generally lower than the “true” 
atmosphere in urban areas (Fig. 2a,b). Such a discrepancy is even pro
found in major polluted urban agglomerations, including Beijing- 
Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta 
(PRD), and SCB regions in China, as well as the Seoul metropolitan area 
in South Korea, the Hanoi metropolitan area in Vietnam, and the 
Vientiane metropolitan area in Laos. In addition, the differences in 
monitoring high-ozone events are also substantial between the 

simulations from two differently-configured models (Fig. 2c,f). In the 
free troposphere, ozone from the control run differs from that in the 
“true” atmosphere (Fig. S4), although both simulations produce similar 
spatial patterns. In the lower troposphere (700 hPa; Fig. S4a,d), we see 
higher ozone from the control run over most of the domain. In the upper 
troposphere (200 hPa; Fig. S4c,f), we find exceptionally higher ozone in 
regions north of China from the nature run, which may be associated 
with transboundary transport. In summary, the differences in spatial and 
vertical ozone distributions between control run and nature run highlight 
a well-designed yet challenging OSSE. 

2.4. Assimilation run with GEOS-Chem 

In the assimilation run, we adopt a sequential sub-optimal Kalman 
filter technique, as previously applied in TEMPO (Zoogman et al., 
2014a, 2014b) and Tropospheric Emission Spectrometer (TES) (Par
rington et al., 2008, 2009) ozone data assimilation. The daytime (01–08 
UTC) synthetic GEMS observations are assimilated at successive 1 h time 
steps. At each assimilation time step, we calculate the optimal profile x̂a 

as a weighted average of the model forecast xb and the observation x̂obs 

(from Section 2.2). 

x̂a
= xb + M(x̂obs–Hxb) (4)  

where H is the observation operator that maps the higher resolution 
model profile into the retrieval space. This operator uses the spatial 
interpolation operator S, as well as the a priori profile xap and averaging 
kernels A from GEMS retrievals (Section 2.2). This procedure removes 
the dependence of the analysis on the model-retrieval comparison 
(Miyazaki et al., 2012, 2020). Different from some air quality OSSEs 
reviewed by Timmermans et al. (2015), a distinct feature of our work is 
the use of space- and time-varying averaging kernels. 

Hxb = xap + A(Sxb–xap) (5) 

We limit our assimilation exercise to GEMS pixels with cloud fraction 
less than 0.3 and only utilize GEMS ozone profiles at 11 retrieval layers 
from the surface to ~ 26.6 hPa in our assimilation to avoid introducing 
redundant stratospheric information. The Kalman gain matrix M 
(denoted as M to avoid confusion relative to Section 2.2) measures the 
relative weight given to the model and the observation: 

M = PbHT(HPbHT + R)–1 (6) 

Fig. 4. Diurnal variations in monthly mean WRF- 
Chem-simulated surface ozone (black; referred as 
the “true” atmosphere; Section 2.1), GEMS surface- 
layer ozone partial column (red), and the corre
sponding degree of freedom for signal (DFS, defined 
as the trace of the averaging kernel matrix, Section 
2.2; blue) at Beijing, Shanghai, and Seoul in August 
2019. Black (red/blue) shaded area denotes 1.0 
(0.25) standard deviation. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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where Pb is the background error covariance matrix, and R is the 
observation error covariance matrix provided with the GEMS retrieval 
(assumed diagonal). 

The observation error (i.e., solution error; Section 2.2) is reduced by 
the square root of the number of observations averaged over each GEOS- 
Chem grid square following Zoogman et al. (2014a). We assume zero 
representation error since the synthetic GEMS observations are spatially 
dense compared with GEOS-Chem. The analysis error covariance matrix 
is calculated as: 

Pa = (I–MH)Pb (7)  

where I is the identity matrix. Following Zoogman et al. (2011), we use 
the square of 25% of the background profile to initialize the model error 
variances (diagonal terms of Pb). Concerning the off-diagonal terms, we 
parameterize the model error covariances by a vertical error correlation 
length of 1.7 km (Fig. S5) and neglect horizontal correlations, which 
could constrain the spreading of the information from GEMS retrievals 
and make the current assimilation setup suboptimal (Parrington et al., 
2008). To make the computation tractable in the assimilation, we solve 
Eq. (4) column by column following Zoogman et al. (2014a). 

3. Benefit of assimilating GEMS observations on ozone 
simulations 

3.1. Improved simulations of near-surface ozone 

We quantify the added value from GEMS observations on simulating 
near-surface ozone by comparing the a priori (without assimilation, 
control run) and a posteriori (with assimilation of GEMS observations, 
assimilation run) from GEOS-Chem simulations to the “true” atmosphere 
(nature run). 

As displayed in Fig. 5, assimilation of GEMS hourly ozone observa
tions improves the model performance by reducing biases in both mean 
near-surface ozone and days of high-ozone events. Before assimilation, 
the a priori ozone at the surface is biased low in urban agglomerations 
with respect to the nature run with a mean bias ranging from − 15.9 to 
− 2.3 ppbv (Fig. 5a). After assimilation, we see lower biases and reduced 
RMSE (by 7.2–19.2%) in surface ozone over the same regions, with more 
distinct improvement observed in YRD and Hanoi where RMSE being 
reduced by ~ 20% (Fig. 5d). In addition, assimilating GEMS observa
tions leads to a 0.2–1.4 days (6.3–29.2%) improvement in capturing 
high-ozone events, with the most significant improvement in YRD 
(29.2%) and SCB (20.3%) (Fig. 5c,f). Within the boundary layer, 
assimilation of GEMS observations provides practical constraints on 
ozone as well (Fig. 5b,e). At 850 hPa, the RMSE of ozone bias is reduced 
by 0.4–3.9 ppbv (7.1–31.4%) after assimilation, comparable to the 
improvement achieved at the surface. In western China, however, 
assimilating GEMS data fails to introduce much improvement. We 
attribute this to the large positive bias in the a priori (Fig. 5a) and low 
retrieval sensitivity to surface ozone (Fig. S6). The slight overestimation 
of high-ozone days in southeast China (e.g., Hunan, Hubei, and Jiangxi 
provinces), however, gets amplified after assimilation, which likely 
stems from the improper specification of model errors. This calls for 
assimilating in-situ observations to better constrain near-surface ozone. 

We further examine the ability of the assimilation system to char
acterize the day-to-day ozone variations. Assimilating GEMS hourly 
observations is able to better characterize the variations in daily MDA8 
ozone on both regional and urban scales (Table 1). The negative mean 
bias over eastern China decreases from − 4.2 ppbv to − 0.4 ppbv. In 
particular, the mean biases in daily ozone are reduced by 2.7–5.2 ppbv 
in major urban agglomerations (BTH, YRD, and PRD) in China. Com
parable improvement is obtained in Seoul and Hanoi (3.0–3.3 ppbv). 
Furthermore, by applying the reduced-major-axis (RMA) regression, we 

Fig. 5. Mean bias of the daily maximum 8-h average (MDA8) ozone at the surface (a, d) and 850 hPa (b, e), and the number of high-ozone events (defined as surface 
MDA8 ozone exceeding 90 ppbv; c, f) in August 2019 between the GEOS-Chem model and the WRF-Chem model (taken as the “true” atmosphere). The top (bottom) 
panels show the a priori (a posteriori) bias without (with) assimilation of GEMS observations across the GEMS full central scan scenario (Fig. 3). Polygons in (a) define 
the regions of the Beijing-Tianjin-Hebei (BTH: 36–41.5◦N, 114–120◦E), the Yangtze River Delta (YRD: 28–34.5◦N, 116–122.5◦E), the Pearl River Delta (PRD: 
21–25◦N, 111–116◦E), the Sichuan Basin (SCB: 28.5–31.5◦N, 103–108◦E) in China, the Seoul metropolitan area in South Korea (Seoul: 36–38◦N, 126–129◦E), the 
Hanoi metropolitan area in Vietnam (Hanoi: 20–22◦N, 104–107◦E), and the Vientiane metropolitan area in Laos (Vientiane: 17.5–19.5◦N, 101–104◦E). Comparison 
statistics for these regions are given inset as the root-mean-square error (RMSE). 
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find that the a posteriori ozone estimates are consistently in better 
agreement with the “true” atmosphere for all the given regions (except 
for SCB) relative to the a priori estimates. Especially, the regression slope 
in Hanoi increases from 0.68 to 0.96, implying a substantial improve
ment in ozone simulation over this region. To conclude, these closer 
agreements confirm that the model errors are effectively reduced via 
assimilating GEMS observations. 

We acknowledge that the above RMSE reduction (7.2–19.2%) in 
near-surface ozone simulation by assimilating GEMS data is less signif
icant than assimilating in-situ observations (Tang et al., 2011; Ma et al., 
2019). For example, Ma et al. (2019) indicated that the optimization of 
anthropogenic emissions and chemical initial conditions via assimilating 
surface multi-constituent observations is valuable for daytime ozone 
forecast as the RMSE is reduced by ~ 30%. However, the potential of 
geostationary ozone measurements from GEMS is still promising given 

its unprecedented spatiotemporal resolution. More experiments are 
underway in the following work to figure out the added value of 
multi-platform data assimilation (e.g., GEMS and surface observations) 
dedicated to improved surface ozone simulations. Moreover, there is a 
gap between synthetic and actual observations since the GEMS science 
data products are still under development. Enhanced assimilation per
formance will be expected after conducting more strict quality control 
following the recommended data quality criteria in the coming GEMS 
ozone profile products. 

3.2. Improved simulations of ozone vertical profiles 

Next, we examine how assimilating GEMS ozone measurements 
improves the simulations of ozone vertical distributions, which plays a 
critical role in dominating the variations of ozone pollution near the 

Table 1 
Comparison statistics between the GEOS-Chem model and the WRF-Chem model (taken as the “true” atmosphere) in August 2019. The a priori (without assimilation, 
from the control run) and a posteriori (with assimilation of GEMS observations, from the assimilation run) surface daily maximum 8-h average (MDA8) ozone for all grid 
squares in given regions (defined in Fig. 5; eastern China: 20–42◦N, 110–123◦E) and for individual days are compared to the “true” atmosphere. Statistics include the 
mean bias and the slope of the reduced-major-axis regression line (the closer the slope to 1, the better agreement the a priori/a posteriori with “true” atmosphere). Also 
shown is the sample size (N).  

Regions N Mean bias (ppbv) Slope 

a priori a posteriori a priori a posteriori 

Eastern China 30690 − 4.2 − 0.4 0.88 0.95 
Beijing-Tianjin-Hebei 4092 − 8.2 − 5.5 0.60 0.76 
Yangtze River Delta 4774 − 5.4 − 0.2 0.78 0.88 
Pearl River Delta 2511 − 4.9 − 1.4 0.79 0.82 
Sichuan Basin 1953 − 2.3 1.1 0.77 0.75 
Seoul metropolitan area 775 − 3.3 − 0.3 0.71 0.78 
Hanoi metropolitan area 775 − 15.9 − 12.6 0.68 0.96 
Vientiane metropolitan area 775 − 8.9 − 7.6 0.51 0.60  

Fig. 6. Comparison of the vertical profiles of monthly 
mean daily maximum 8-h average (MDA8) ozone 
(a–d) between the nature run (“true”, black), control 
run (a priori, blue), and assimilation run (a posteriori, 
red) in August 2019 in eastern China, Seoul, Hanoi, 
and Vientiane (defined in Fig. 5 and Table 1). The 
middle (e–h) and bottom panels (i–l) show the bias 
and root-mean-square error (RMSE) between the 
control (assimilation) run and nature run in blue (red). 
(For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web 
version of this article.)   

L. Shu et al.                                                                                                                                                                                                                                      



Atmospheric Environment 274 (2022) 119003

8

surface by the transport from the free troposphere to the boundary layer. 
Since the added information through data assimilation of GEMS obser
vations varies largely with space (Fig. 5), we limit the following analysis 
to eastern China, Seoul, Hanoi, and Vientiane. 

Fig. 6 compares the ozone vertical profiles between the nature run, 
control run, and assimilation run in August 2019. At mid-latitudes (i.e., 
eastern China and Seoul), the control run shows a negative a priori bias 
near the surface (below 800 hPa) and in the middle to upper troposphere 
(200–500 hPa), while the forward model overestimates ozone concen
trations in the lower to middle troposphere (500–800 hPa). After data 
assimilation, there is a clear reduction in ozone bias (by 25.6–31.7%) 
and RMSE (24.3–29.4%) in the middle to upper troposphere (200–300 
hPa). Nevertheless, we see inadequate corrections made to modeling 
ozone in the lower to middle troposphere, as commonly revealed by 
Miyazaki et al. (2012) and Quesada-Ruiz et al. (2020). It indicates that 
GEMS ozone profile observations may not have enough information to 
sufficiently constrain the ozone vertical profiles owing to the low 
sensitivity and large observation errors (Fig. S3), as well as the sparse 
vertical gridding (~ 2.5 km-thick) in the troposphere, especially within 
the boundary layer (Section 2.2). Compared to mid-latitudes, at low 
latitudes (i.e., Hanoi and Vientiane) with a deeper troposphere layer, 
adding GEMS observations largely eliminates the negative bias in the 
middle to upper troposphere where RMSE being reduced by 18.2–49.2% 
between 200 and 300 hPa, leading to a closer agreement with the “true” 
atmosphere. In contrast, at the same time, a limited improvement is 
obtained for ozone profiles in the lower troposphere, as discussed above. 
It also suggests the need of multi-platform data assimilation (e.g., GEMS 
and ozonesonde measurements) to improve the assimilation 
performance. 

The stratosphere-to-troposphere transport is thought to be the 
dominant source of tropospheric ozone (Monks et al., 2015; Han et al., 
2019). We screen out a stratospheric intrusion event by scrutinizing the 
“true” atmosphere to evaluate how GEMS monitors ozone in terms of 
vertical distribution under such a condition. Fig. 7 provides a 
stratosphere-to-troposphere transport example along the longitude of 
121.25◦E on 15 August 2019. The stratospheric intrusion is character
ized by a remarkable ligulate ozone enhancement extending to the lower 
troposphere (700 hPa) from high latitude to low latitude. The process is 
well-represented by the “true” atmosphere, whereas the GEOS-Chem 
model a priori similarly captures the stratospheric intrusion pattern 
but of a smaller magnitude in ozone concentrations. The assimilation run 

shows the improved agreements with the “true” atmosphere relative to 
the control run. A substantial bias reduction is obtained between 200 and 
500 hPa and between 600 and 800 hPa. There is an obvious time lag of 
the stratospheric intrusion event (18 UTC) with respect to the assimi
lation window (01–08 UTC), thus our results suggest that GEO mea
surements also provide valuable constraints on the diurnal variability in 
tropospheric ozone. 

4. Conclusions 

We have performed an Observing System Simulation Experiment 
(OSSE) to evaluate how assimilating daytime hourly ozone observations 
from the Geostationary Environment Monitoring Spectrometer (GEMS) 
improves surface and tropospheric ozone simulations in East Asia. The 
OSSE utilizes the independence between two differently-configured 
models (GEOS-Chem and WRF-Chem), along with a Kalman filter 
technique. Assimilation of GEMS observations can potentially reduce 
biases in near-surface and middle to upper tropospheric ozone simula
tion, which would otherwise propagate freely without constraints. 
Specifically, the root-mean-square error (RMSE) of surface ozone bias is 
decreased by 7.2–19.2% after the assimilation over major Asian urban 
areas, resulting in a more accurate (6.3–29.2%) prediction of high-ozone 
events. The assimilation efforts also make noticeable adjustments in 
ozone vertical profiles in the middle to upper troposphere to better 
capture stratospheric intrusion events. 

Our work offers a simulation reference for future ozone studies in 
East Asia, acknowledging uncertainties in the forward model, the 
assimilation technique, and synthetic GEMS observations may compli
cate the results. For example, an overestimation of errors in modeled 
ozone could lead to overoptimistic estimates of information contributed 
by GEMS (Zoogman et al., 2014a). Here the results of our study depend 
on the OSSE design and should be interpreted within the current 
observing system. Future assimilation exercises may want to pay 
attention to data screening by following data quality criteria in the 
coming GEMS ozone profile products. In addition, further investigation 
may benefit from additional constraints enabled by multi-spectral in
struments (e.g., ultraviolet, infrared, or visible) or multi-platform (e.g., 
geostationary, low Earth orbit, ozonesonde, and ground-based stations) 
observations. 

Fig. 7. Latitude-altitude cross-section of ozone con
centrations (121.25◦E, 18 UTC, on 15 August 2019). 
The “true” atmosphere constructed with WRF-Chem 
in the nature run (a) is compared to the a priori 
(without assimilation, from the control run; b) and a 
posteriori (with assimilation of GEMS observations, 
from the assimilation run; c) from the GEOS-Chem 
simulations. The bottom right panel (d) shows the 
difference between the a posteriori and the a priori. 
Note that the panel scales are different.   
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