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• Annual and seasonal PM2.5 concentra-
tions in Chinese cities have decreased
since 2013

• Day-to-day variability of PM2.5 concen-
trations is driven by meteorology and
chemistry

• Gamma distributions succinctly de-
scribe the mean, spread, and skewness
of the PM2.5 probability distribution

• Health risks due to long-term and short-
term exposures to PM2.5 have declined
in China
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Weused statisticalmethods and theGEOS-Chemmodel to interpret the observed spatiotemporal and probability
variations of surface PM2.5 concentrations in China from December 2013 to November 2019, as well as to assess
the drivers for the variations and the implications for health risks associated with long-term and short-term ex-
posure to PM2.5. Annual and seasonal PM2.5 concentrations have decreased overmost areas in China during the 6-
year period.We decomposed the observed day-to-day variation of PM2.5 concentrations in eastern Chinese cities
and found that it showed two distinct major spatial modes, which fluctuated in strength seasonally. The first
mode, characterized by most of Eastern China being in the same phase, was mainly associated with the regional
ventilation of pollutants. The secondmode showed a dipolar pattern between the Beijing-Tianjin-Hebei area and
the Yangtze River Delta area andwasmore prominent in summer. Usingmodel simulations, we showed that this
dipole mode was chemically driven by the secondary formation of sulfate in summer. We further used a gamma
distribution to succinctly interpret the changes in the probability distributions of PM2.5. We found that the na-
tionwide decline in seasonal mean PM2.5 concentrations mainly reflected decreased occurrences of extremely
high PM2.5 concentrations, whichwas strongly driven by the interannual variation ofmeteorology. These changes
in the annual means and probability distributions of PM2.5 since December 2013 has led to significant decline of
the estimatedmortality risks associated with long-term and short-term PM2.5-exposures. Regions that were less
polluted saw the largest relative benefit per unit decrease in PM2.5 concentration, due to the steepness of the
exposure-response curve at the low-concentration end. Our integrated methodology effectively diagnosed the
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drivers of PM2.5 variability and the associated health risks and can be used as part of the decision tool for PM2.5

pollution management over China.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Particulate matter with an aerodynamic diameter smaller than
2.5 μm (PM2.5) has been a frequent culprit of poor air quality in many
parts of China (Ministry of Environmental Protection of the People's
Republic of China, 2014, 2015, 2016, 2017; Ministry of Ecology and
Environment of the People's Republic of China (MEE), 2018, Ministry
of Ecology and Environment of the People's Republic of China, 2019),
posing great risks to the Chinese public health. In 2013, 99.6% of the Chi-
nese population lived in areaswhere the annualmean PM2.5 concentra-
tion exceeded 10 μgm−3, the air quality guideline (AQG) recommended
by the World Health Organization (WHO) (Brauer et al., 2016; WHO,
2006). Long-term exposure to annual mean PM2.5 concentrations ex-
ceeding the AQG is associated with cause-specific mortality (WHO,
2006; Burnett et al., 2014; Song et al., 2017). At the same time, the
day-to-day variation of PM2.5 concentrations led to excursions of vari-
ous PM2.5 levels, the short-term exposure to which is also associated
with significant health risks (e.g., Shang et al., 2013; Lee et al., 2015;
Chen et al., 2017b; Liu et al., 2019). In September 2013, the Chinese gov-
ernment promulgated the “Air Pollution Prevention and Control Action
Plan” to reduce the anthropogenic emissions of PM2.5 and its precursors
nationwide (The State Council of the People's Republic of China, 2013).
Since then, the annual mean concentrations of PM2.5 in many parts of
China has decreased (Ministry of Environmental Protection of the
People's Republic of China, 2014, 2015, 2016, 2017; MEE, 2018,
Ministry of Ecology and Environment of the People's Republic of
China, 2019), likely due to both the nationwide emission reduction
and the interannual variability of climate (e.g., Zheng et al., 2018; Mao
et al., 2019). It is thus crucial to have anupdated and comprehensive un-
derstanding of the spatiotemporal and probability variations of PM2.5,
their drivers, as well as the public health implications to better inform
policy-making for air quality control.

Exposure to high PM2.5 concentrations has been linked with a range
of human health problems (WHO, 2006). Cohort studies in China and
elsewhere in the world showed that long-term exposure to high PM2.5

concentrations above a threshold concentration range may increase
the risks of mortality caused by cardiovascular diseases (stroke), ische-
mic heart disease (IHD), chronic obstructive pulmonary disease (COPD),
lung cancer (LC), among other diseases (e.g., Pope et al., 2002; Cao et al.,
2011; Fang et al., 2016; Song et al., 2017). Song et al. (2017) estimated
that in 2015, long-term exposure to PM2.5 may have contributed to
30.2% of the total cause-specific deaths from IHD, stroke, COPD, and
LC. On the other hand, short-term exposure to PM2.5 have been linked
tomortality caused by cardiovascular diseases, hypertension, stroke, re-
spiratory diseases, and COPD, among other diseases (Chen et al., 2017b,
Chen et al., 2018; Li et al., 2015; Liu et al., 2019). Chen et al., 2017b esti-
mated a 0.22% increase in daily mortality from total non-accidental
causes associated with every 10 μg m−3 increase in the two-day
running-mean PM2.5 concentration. In addition, there is no apparent
threshold for the adverse response of human health to short-term expo-
sure of PM2.5 (WHO, 2006; Chen et al., 2017b; Liu et al., 2019). Many
previous studies have examined the health outcomes of long-term ex-
posure to PM2.5 pollution in China and how those health risks may be
reduced when annual mean PM2.5 levels are reduced (e.g., Cao et al.,
2011; Fang et al., 2016; Song et al., 2017; Shi et al., 2018; Ding et al.,
2019). Much less is known about the Chinese mortality associated
with short-term PM2.5 exposure and how those risks are related to the
temporal variability of PM2.5 concentrations. There is also evidence
that different chemical compositions in PM2.5 have different toxicity
(e.g., Cao et al., 2012; Son et al., 2012), although there is yet insufficient
epidemiologic data to formulate the exposure-response relation for in-
dividual chemical compositions in PM2.5 or for PM2.5 from different
sources (Burnett et al., 2014).

Temporal and spatial variations of surface PM2.5 reflect changes in
emissions, atmospheric chemistry, and transport, all of which vary
with location and time. For example, PM2.5 concentrations over most
Chinese cities are higher in winter than in summer (Zhang and Cao,
2015). The higher wintertime PM2.5 concentrations are due to a combi-
nation of larger anthropogenic emissions from power generation and
residential heating (Huang et al., 2017; Ma et al., 2017), a more com-
pressed and stable atmospheric boundary layer that prevents the venti-
lation of PM2.5 to the free troposphere (Guo et al., 2016; Zhong et al.,
2018), and reduced wet scavenging by less rainfall (Zhao et al., 2009;
Sui et al., 2013). PM2.5 concentrations also often show synoptic time-
scale variation, reflecting the removal of PM2.5 by ventilation to the
free troposphere andbywet scavenging, both ofwhichprocesses are as-
sociated with the passage of frontal systems (Quan et al., 2014; Shu
et al., 2017; Liu et al., 2018; Leung et al., 2018). Many previous studies
have examined the national-level patterns and regional-level trends of
PM2.5 in recent years (e.g., Zhang and Cao, 2015; Silver et al., 2018;
Hou et al., 2019; Zhai et al., 2019; Zhang et al., 2019). However, the
day-to-day variability of PM2.5 and the drivers for that variability,
most relevant to the short-term exposure health risks, have not been
thoroughly diagnosed.

In this paper, we combined statistical methods and the GEOS-Chem
model to present an updated understanding of the spatiotemporal and
probability variations of PM2.5 concentrations for different parts of
China between December 2013 and November 2019. In particular, we
emphasized the day-to-day variability of PM2.5, its chemical drivers in
different seasons, and the changes of that variability since 2013. The
identification of the chemical drivers of PM2.5 concentration variability
may help policymaker to better define emission reduction targets to re-
duce high PM2.5 exposure, as well as better control species-dependent
health risks. We introduced the use of the gamma distribution as a suc-
cinct way to represent the probability distribution of PM2.5 and its
changes. We also examined the implications of these observed changes
to the PM2.5-related health risks associated with both long-term and
short-term exposures, with the goal of better informing the next stage
of policy-making for air quality management and public health
protection.

2. Data and methods

2.1. Chinese network of hourly surface PM2.5 measurements

Hourly PM2.5 concentrationshave beenmeasured since 2013 at a na-
tional network of surface sites, managed by the China National Environ-
mental Monitoring Centre (www.cnemc.cn). The number of sites has
more than doubled during our study period, from 620 sites in December
2013 to 1640 sites in November 2019, covering 367 cities across China.
At each site, PM2.5 mass concentrations weremeasured using either the
beta-radiation attenuationmethod (BAM) or the tapered-element oscil-
lating microbalance method (TEOM) (MEP, 2012; MEP, 2013a). Each
site was designed to represent an area in its vicinity of 500 m to 4 km
in diameter (MEP, 2013b). The number of sites in each city ranged be-
tween 1 and 20, with an average of 4.

These surface PM2.5 measurements have not undergone consistent
quality assurance/quality control prior to their release to the public
and occasionally contained suspect values that may be erroneous. To
address this issue, we developed an ad hoc quality control protocol to

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.cnemc.cn/
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remove outliers and invalid measurements (supplementary informa-
tion). Our protocol was developed independent of those published in
a few recent studies but served similar purposes (Barrero et al., 2015;
He et al., 2017; Song et al., 2017; Silver et al., 2018). Briefly, we devel-
oped five criteria to screen for outliers, continuous repeat values (indi-
cating possible errors in detection or data logging), unrealistic
changes, and periods with too few valid measurements. For any given
month, sites with b50% valid hourly measurements after applying the
quality control were removed from further analysis. Our data quality
control removed approximately 2% of the raw hourly data, leaving just
over 64 million hourly measurements from all sites for the period be-
tween December 2013 and November 2019. For each individual site,
65% to 100% (average 98% for all sites) of the hourly measurements
were retained. We then averaged the valid hourly measurement of all
available sites within each city to represent the hourly PM2.5 level at
the city scale. This was done to reduce the sampling bias among cities
and to enable comparison with model simulations. Furthermore, data
from a city will be removed from all analyses if the valid hourly data
was available b85% length of time for each season between December
2013 and November 2019.

2.2. GEOS-Chem model description

We used the GEOS-Chem global 3-D model of atmospheric chemis-
try and transport (Bey et al., 2001; v11–01, www.geos-chem.org) to
simulate surface PM2.5 over China from January 2014 to December
2015, in order to help interpret the drivers of the observed PM2.5 vari-
ability. GEOS-Chem was driven by the GEOS-FP reanalysis meteorolog-
ical fields from the NASA Global Modeling and Assimilation Office at a
native resolution of 0.3125° longitude × 0.25° latitude. Meteorological
fields were described on 47 vertical levels extending from the surface
to 0.01 hPa, with seven levels below 1 km. The 3-D meteorological
data was updated hourly; 2-D data and surface data were updated
every 3 h. Boundary layer mixing was described by a non-local scheme
to account for differential mixing in response to changing atmospheric
instability (Lin and McElroy, 2010).

We used the nested domain capability of GEOS-Chem over Eastern
China, defined here as 100–125° E and 20–45° N. This simulation do-
main, which was a reduced version of the standard GEOS-Chem nested
domain for China (Zhang et al., 2016), improved our computation expe-
diency but excludedHeilongjiang, Xinjiang, and Tibet,where therewere
few PM2.5 measurements. Daily lateral boundary conditions were from
a self-consistent global GEOS-Chem simulation.

GEOS-Chem included a detailed Ox-NOx-hydrocarbon-aerosol-bro-
mine chemical mechanism (Parrella et al., 2012; Mao et al., 2013).
PM2.5 in GEOS-Chem consisted of naturalmineral dust, sea salt, primary
black carbon aerosols, primary organic aerosols (POA), secondary inor-
ganic aerosols (sulfate, nitrate, and ammonium), and secondary organic
aerosols (SOA). Anthropogenic dust was not included in our model ver-
sion. Natural dust and sea salt aerosols were each representedwith four
size bins (Fairlie et al., 2007; Jaeglé et al., 2011). Thermodynamics of
secondary inorganic aerosols were simulated by the ISORROPIA II pack-
age (Fountoukis and Nenes, 2007; Pye et al., 2009). Simulation of pri-
mary and secondary organic aerosol was based on the Volatility Basis
Set (VBS) (Robinson et al., 2007) as implemented by Pye et al. (2010).
POA was treated as semi-volatile or of intermediate volatility (S/IV)
and partitioned between the gas and particulate phases (Pye and
Seinfeld, 2010). Biogenic SOAwas produced by the S/IV oxidation prod-
ucts of isoprene, monoterpenes, and sesquiterpenes. Anthropogenic
SOA was produced from the S/IV oxidation products of benzene, tolu-
ene, and xylene, as well as from the aging and partitioning of S/IV
POA. The organic aerosol to organic carbon mass ratios of 1.4 and 2.1
were assumed for POA and SOA, respectively (Turpin and Lim, 2001).

Chinese monthly anthropogenic emissions of PM2.5 primary compo-
nents and gaseous precursors for the years 2014 and 2015 were from
the Multi-resolution Emission Inventory for China (MEIC, v1.3, http://
www.meicmodel.org/; Li et al., 2014, Li et al., 2017; Zheng et al.,
2018), which included emissions from power generation, industry,
transportation, agriculture and residential activities. The native resolu-
tion of the inventory was 0.5° longitude × 0.5° latitude which we inter-
polated to our simulated resolution. Anthropogenic emissions of POA
were assigned to two volatility bins (POG1/2) with a ratio of
0.49:0.51. Biogenic volatile organic compound emissions (including iso-
prene,monoterpenes, and sesquiterpenes)were calculated online using
the Model of Emissions of Gases and Aerosols from Nature (MEGAN
v2.1, Guenther et al., 2012). Biomass burning emissions were taken
from the Global Fire Emissions Database (GFED v4.1s, van der Werf
et al., 2010). Emission factors were included for benzene, toluene, and
xylene, with emissions of POG1/2 scaled from an OC emission factor
and intermediate volatility precursors (IVOCs, distributed as naphtha-
lene) scaled from benzene. Emissions of natural dust and sea salt were
as described by Zender et al. (2003) and Jaeglé et al. (2011),
respectively.

In order to differentiate the impacts on PM2.5 concentrations due to
anthropogenic emission reductions and interannual climate variability,
we conducted two sets of simulations. The control simulation was
driven by year-specific Chinese anthropogenic emissions for 2014 and
2015, respectively. The sensitivity simulation was driven by 2014 Chi-
nese anthropogenic emission only. For comparison against city-scale
observations, model results were sampled in each valid observed city
at the coordinates of the mass center of the valid sites within that city.

2.3. Decomposition of PM2.5 day-to-day variability

We decomposed the observed PM2.5 concentrations to examine the
spatial patterns associated with the day-to-day variability of PM2.5 for
each season betweenDecember 2013 andNovember 2019.Wealso per-
formed the same decomposition to GEOS-Chem simulated results for
2014 to help interpret the observed variability. For the observations in
a given season of a given year, we first excluded cities with b90% valid
hourly measurements after the quality control. For the remaining cities,
we imputed the small number of missing values usingmean concentra-
tions of the neighbouring 24 h (more details in the supplementary in-
formation). We used a wavelet transform (Torrence and Compo,
1998) as a low-pass filter to remove observed and simulated PM2.5 var-
iations at frequencies of less than a day at each city.

We then used empirical orthogonal function (EOF) decomposition
(Lorenz, 1956) to reduce the dimensionality of the observed and simu-
lated data to their major spatial modes of variability (i.e., the EOF
modes) and the associated timeseries of amplitudes (i.e., the principal
components, PCs). The convolution of each EOF mode with its corre-
sponding PC describes the variation of PM2.5 attributable to that mode.
We divided each year into four seasons: winter (DJF), spring (MAM),
summer (JJA), and fall (SON); except that only January and February
was used to represent winter 2014 for observation-model comparisons
due to the lack ofmodel simulation in December 2013. For each city, the
seasonal mean PM2.5 concentration for that year was removed prior to
the EOF analysis. We assumed that the PM2.5 concentrations measured
in each city were mutually independent and that measurements at
each city carried the same weight. The cities included in the decompo-
sition were consistent throughout the study period for each season,
such that the decomposed spatiotemporal modes can be compared be-
tween years.

2.4. Gamma distribution fitting of temporal PM2.5 probability distribution

We used a two-parameter gamma distribution (Stacy, 1962) to de-
scribe the probability density functions (PDFs) of the hourly surface
PM2.5 concentrations in each city over seasonal time frames (DJF for
winter, MAM for spring, JJA for summer, and SON for fall) from Decem-
ber 2013 to November 2019. We also performed the analysis on GEOS-
Chem results for January 2014 to November 2015. Several studies have

http://www.geos-chem.org/
http://www.meicmodel.org/;
http://www.meicmodel.org/;
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used the two-parameter gamma distribution to effectively describe the
PDF of local particular matter concentrations (e.g., Marani et al., 1986;
Rumberg et al., 2001; Sharma et al., 2013). To the best of our knowledge,
it has not been applied on a nationwide scale.

We used the maximum likelihood estimation (MLE) method to fit
the PDFs of hourly PM2.5 concentrations (x) to a two-parameter
gamma distribution function f(x) (Eq. (1)):

f xð Þ ¼ x=βð Þα−1 exp −x=βð Þ
βΓ αð Þ for x;α;βN0 ð1Þ

where α and β are referred to as the shape parameter and the scale pa-
rameter, respectively. Γ(α) is a gamma function:

Γ αð Þ ¼
Z ∞

0
e−ttα−1dt ð2Þ

where t is a dummy variable for integration. The mean (x) and variance
(s2) of the hourly PM2.5 concentrations described by the continuous PDF
in Eq. (1) can be represented by the products αβ and αβ2 (Eqs. (3) and
(4)), respectively (Husak et al., 2007):

x ¼ αβ ð3Þ

s2 ¼ αβ2 ð4Þ

From Eqs. (3) and (4), β is equivalent to the ratio of the variance and

themean of the continuous PDF ðs
2

x
Þand therefore represents ameasure

of the PDF spread. For a givenα value, a larger β value indicates a larger
spread relative to the mean and a higher probability of very high PM2.5

concentrations (Figs. S1a-c). In addition, the gamma distribution is pos-
itively skewed; its skewness is equal to 2=

ffiffiffiffi
α

p
, while the excess kurtosis

is equal to 6/α. For a given β value, a smaller α value indicate a more
positively-skewed distribution and a relatively higher probability of
very low PM2.5 concentrations (Figs. S1d-f). As such, the use of the
gammadistribution greatly reduces theparameter space required tode-
scribe the PDFs of PM2.5 concentrations, as well as their changes. The
gamma distribution is also a good tool to examine the model's ability
to capture the variability when the mean value is well represented.
We calculated the values of α and β both at the provincial level, as
well as for six regions in China for the purpose of concise presentation:
the Beijing-Tianjin-Hebei area (BTH), Northern China (including the
BTH area), Northeastern China, Central China, Southern China, and
Western China (region divisions are shown in Table S4).

2.5. Health risks associated with long-term and short-term exposure

We assessed the changes in the health risks associated with long-
term and short-term exposure of PM2.5, as a result of the spatiotemporal
changes in PM2.5 from December 2013 to November 2019. We calcu-
lated the health risks at a provincial level; but for the purpose of concise
presentation in Section 5, the results were aggregated to six regions in
China.

For long-term exposure, we used the integrated exposure-response
(IER)model (Burnett et al., 2014) to calculate the relative risks (RRi,j) on
a yearly basis for cause-specific mortality for disease jwithin province i
as:

RRi; j Cið Þ ¼ 1þ aj 1− exp −γ j Ci−C0; j
� �δ j

h in o
; for Ci ≥C0; j

RRi; j Cið Þ ¼ 1; for CibC0; j ð5bÞ
where Ci was the annual mean PM2.5 concentration (μg m−3) for prov-
ince i. C0,j was the counterfactual (threshold) annual mean PM2.5 con-
centration for disease j, below which there is assumed to be no
additional risk for the disease of concern. The parameters, aj, γj, and δj,
were taken from Song et al. (2017), based on nationally-pooled Chinese
mortality data for four specific causes: cerebrovascular disease (stroke),
ischemic heart disease (IHD), chronic obstructive pulmonary disease
(COPD), lung cancer (LC).

We then calculated the attributable mortality rates (AMRi) to esti-
mate the total number of cause-specific deaths associated with long-
term PM2.5 exposure in province i (Song et al., 2017):

AFi; j ¼
RRi; j Cið Þ−1
RRi; j Cið Þ ð6Þ

AMRi ¼ ∑
j¼1

n
AFi; j � yi; j

� �
ð7Þ

AF ¼ AMRi

∑ j¼1
n yi; j

ð8Þ

where AFi,j was the fraction of mortality risk attributable to disease j in
province i. yi,j corresponded to the annual standardized mortality rate
for disease j in province i, described as deaths per 105 people, which
were taken from Zhou et al. (2016). AFwas the attributable fraction of
total deaths caused by PM2.5-related stroke, IHD, COPD, and LC. All pa-
rameters used in Eqs. (5a), (5b)–(8) are listed in the supplementary
information.

For dailymortality associatedwith short-termexposure of PM2.5, we
used the Chinese-average PM2.5-concentration-response curve derived
by Chen et al. (2017b), which described the relative change in daily
mortality from all PM2.5-related causes as a function of two-day
running-mean PM2.5 concentrations. Epidemiology studies have found
no evidence for a counterfactual concentration (threshold) for health
risks associated with short-term PM2.5 exposures (e.g., WHO, 2006;
Liu et al., 2019). Therefore, we translated the curve such that the relative
risk (RRd) of mortality for zero exposure was zero. Chen et al. (2017b)
showedpossible decline in RRd at two-day running-mean PM2.5 concen-
trationsN230 μgm−3, although the uncertaintywas large.We conserva-
tively assumed RRd to be constant at two-day running-mean PM2.5

concentrations N230 μg m−3. We fitted the resulting exposure-
response curve in a piecewise manner (Fig. S2):

RRd;i xi ≤50ð Þ ¼ 0:0011xi

RRd;i 50bxi ≤230ð Þ ¼ −4:0433� 10−7xi2 þ 2:3308� 10−4xi þ 0:0447

RRd;i xiN230ð Þ ¼ 0:0767 ð9cÞ
where xi (μg m−3) was the two-day running-mean PM2.5 concentration
in province i, and RRd,i (unitless) was the relative risk of total daily mor-
tality associated with short-term PM2.5 exposure in province i. For any
given year, we calculated the annual mean relative risk (RRy,i) of daily
mortality associated with short-term exposure to PM2.5 in province i;
this was done by weighting the daily relative risk (RRd,i(xi)) with the
probability distribution function of xi in that year and integrating over
the full range of xi.

The exposure-response curves used here for both long-term and
short-term exposures were derived from the nationally-pooled mortal-
ity data in China (Song et al., 2017; Chen et al., 2017b). Nevertheless,
theremay be difference in the population's sensitivity to PM2.5 in differ-
ent cities/provinces/regions (e.g., Chen et al., 2017b), either due to spa-
tial inhomogeneity in PM2.5 composition, in population physiology, or in
medical practices. There are also inevitable representation biases, as
PM2.5 measurements are sparse in some areas of China (e.g., Western
China), where exposure assessment are likely less accurate. We par-
tially, but not entirely, avoid this uncertainty by focusing our analyses
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below (Section 5) on the changes within each region for the period be-
tween December 2013 and November 2019.

3. Spatiotemporal variation of surface PM2.5 in Chinese cities be-
tween December 2013 and November 2019 and its drivers

3.1. Spatial patterns and trends of the observed annual and seasonal mean
PM2.5 concentrations in Chinese cities

Fig. 1 shows the annual and seasonal mean surface PM2.5 concentra-
tions from 367 cities in China for the period between December 2013
and November 2019. There was large spatial variability in the annual
and seasonal mean surface PM2.5 concentrations across China, with
the highest concentrations generally found over Northern China
(Fig. 1a). Surface PM2.5 concentrations inmost citieswere higher inwin-
ter months and lower in summer months, as shown in previous studies
(e.g., Zhang and Cao, 2015). Wintertime average PM2.5 concentrations
exceeded 75 μg m−3 over Northern China (Fig. 1b). The concentrations
and spatial patterns of PM2.5 were similar in spring and fall (Fig. 1c and
Fig. 1. Observed annual and seasonal mean surface PM2.5 concentrations (μg m−3) from the na
months, (b) winter (DJF), (c) spring (MAM), (d) summer (JJA), and (e) fall (SON).
e),with the exception of a few cities in Xinjiang Province in spring, likely
reflecting the impact of natural dust (Xue et al., 2010; Turap et al.,
2019). In summer, the mean PM2.5 concentrations were below
75 μg m−3 in almost all Chinese cities (except the city of Hetian in
Xingjiang) and below 35 μg m−3 (first interim target recommended
by the WHO, IT-1) in 77% of the cities (Fig. 1d).

Fig. 2a shows the observed trends in annual mean PM2.5 concen-
trations at the 189 valid cities (188 for DJF, 187 for MAM, 188 for JJA,
189 for SON) between December 2013 and November 2019. Fig. S3
shows the observed trends in percentages relative to the mean. Out
of those 189 cities, 155 showed significant negative trends (p-
values b 0.1) in the annual mean PM2.5. The remaining 34 cities
showed no significant trends during this period in the annual
means. Silver et al. (2018) previously analyzed a shorter PM2.5 re-
cord (January 2015–December 2017) and found significant positive
trends in annual mean PM2.5 at 10% of the cities, mainly over Shanxi
and Jiangxi provinces. We found that those positive trends were
driven by brief increases in PM2.5 concentrations in 2017 in those
two provinces. We found no significant annual trends in those cities
tional monitoring network over China during December 2013 to November 2019: (a) all



Fig. 2. Trends of PM2.5 concentrations (μgm-3 yr−1) for (a) allmonths and for different seasons: (b)winter (DJF), (c) spring (MAM), (d) summer (JJA), and (e) fall (SON) duringDecember
2013 to November 2019. Blue dots represent cities with significant negative trends of PM2.5 concentrations (significance level= 0.1). Gray dots represent cities with no significant trends.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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after re-analyzing the PM2.5 data using our longer dataset. Figs. 2b-2e
show the observed trends of seasonal mean PM2.5 concentrations
from December 2013 to November 2019. For cities with sufficient
valid data, 109 (out of 188 in DJF), 128 (out of 187 in MAM), 163
(out of 188 in JJA), and 127 (out of 189 SON) cities showed signifi-
cant negative trends in seasonal mean PM2.5 concentrations. The
rest of the cities showed no significant trends.

Fig. 3 shows the monthly and annual mean PM2.5 concentrations
from December 2013 to November 2019 for the three largest mega-
city clusters in China: the Beijing-Tianjin-Hebei area (BTH), the
Yangtze River Delta (YRD), and the Pearl River Delta (PRD). Despite
the large seasonal and interannual variations, the annual mean
PM2.5 concentrations for all three megacity clusters showed signifi-
cant negative linear trends: −8.1, 4.4, and −2.2 μg m−3 yr−1 for
the BTH, the YRD, and the PRD, respectively. The annual mean
concentration of PM2.5 in the PRD has remained below the WHO IT-
1 of 35 μg m−3 since 2015. PM2.5 concentrations in all three megacity
clusters peaked in winter. Wintertime PM2.5 concentrations in the
BTH area showed larger year-to-year variation compared to the
other clusters, which likely indicated a stronger influence of meteo-
rology to wintertime PM2.5 for the BTH area (Mao et al., 2019). It is
also possible that interannual variation of anthropogenic emissions,
for example that related to differences in power consumption, may
be partially contributing to the larger interannual variation of win-
tertime PM2.5 concentration in the BTH area. We also note that the
secondary PM2.5 peak in the BTH area in summer (June and July)
has disappeared since 2017. This is likely related to the ban on the
open-burning of crop residue in Northern China, which used to be
a major source of seasonal pollutantants after the local wheat har-
vest in early summer (Chen et al., 2017a).
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Fig. 3. Time series of the observedmonthly (thick) and annual (thin)mean PM2.5 concentrations from December 2013 to November 2019 for threemajormegacity clusters in China; Bei-
jing-Tianjin-Hebei (BTH, blue), Yangtze River Delta (YRD, red), and Pearl River Delta (PRD, green). The vertical black lines indicate January of each year. The horizontal black line indicate
theWorldHealth Organization interim target-1 standard (IT-1) of 35 μgm−3. (For interpretation of the references to colour in thisfigure legend, the reader is referred to theweb version of
this article.)

7Z. Jiang et al. / Science of the Total Environment 723 (2020) 137896
3.2. Day-to-day variation of PM2.5 concentrations over eastern Chinese
cities

We next examined the day-to-day variation of PM2.5 concentrations
in Eastern China for different seasons. Fig. 4 shows the first two leading
EOFs of the day-to-day variation of PM2.5 and their explained variance
for the four seasons from December 2013 to November 2019. The cities
used for the analysis in Fig. 4 are consistent for each season (108 for
winter, 174 for spring, 172 for summer, and 176 for fall), such that the
observed EOF modes can be compared for the years 2014 to 2019. The
day-to-day variation of the observed PM2.5 over Eastern China mostly
showed two distinct spatial patterns in all seasons during the 6 years.
One characteristic EOF mode showed a spatial pattern with most of
Eastern China in the same phase and with the largest amplitude over
Northern China, including the BTH area and nearby provinces of Shan-
dong and Henan. This pattern likely reflected the regional ventilation
Fig. 4. The first and second EOF modes for the observed day-to-day variation of PM2.5 concent
during December 2013 to November 2019. The percentages of variance explained by each mo
of PM2.5 over Eastern China associated with the passages of cold fronts,
which have the largest impacts on PM2.5 concentrations over the highly
polluted Northern China area (e.g., Liu et al., 2018). The other EOFmode
showed a dipole pattern, where the BTH area and the YRD area were in
opposite phases. Thesefindingswere consistentwith the analysis by Liu
et al. (2018), although the spatial extent of their analysis only covered
Northern and Central China and was limited to studying fall and winter
months in 2013.

We found, however, that the relative importance of these two ob-
served spatial modes of PM2.5 variability differed by season. In winter,
spring, and fall, the in-phase mode contributed 26% to 48% of the ob-
served synoptic variance of PM2.5 in Eastern China, while the dipole
mode contributed only 10% to 18% of the observed variance. In contrast,
during summer months, the contribution of these two spatial modes to
the observed PM2.5 variability was similar (15% to 20% for the in-phase
mode and 11% to 20% for the dipole mode, respectively). The exception
rations over Eastern China for winter (DJF), spring (MAM), summer (JJA), and fall (SON)
de are in the parentheses.
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was summer 2017, when the in-phasemode explained 37.6% of the ob-
served variance. For their analysis of fall and winter only, Liu et al.
(2018) attributed both spatial modes to wind-related dilution or
build-up of pollutants by virtue of their similarity to EOF spatial patterns
found in wind speed for the same period. We found below, however,
that chemical drivers may also contribute to the relative strengths of
the two spatial modes.

3.3. Chemical drivers of the observed day-to-day variation of PM2.5 concen-
trations over eastern Chinese cities

We used the GEOS-Chemmodel to interpret the chemical drivers of
the observed PM2.5 day-to-day variation modes using the year 2014 as
an example. To achieve this, we first examined themodel's ability in de-
scribing the observed seasonalmean concentrations andmodes of PM2.5

day-to-day variation in 2014. Fig. S4 compares the observed and GEOS-
Chem-simulated seasonal mean PM2.5 concentrations in 2014 over
Fig. 5. Comparison of EOFs for the observed and simulated PM2.5 concentrations over Eastern Ch
columns are the first and second EOFs for the observations, respectively. The second and fourth
indicate opposite amplitudes around the seasonalmean PM2.5 concentration at each city. The pe
the references to colour in this figure legend, the reader is referred to the web version of this a
Eastern Chinese cities. For the purpose of comparing model and obser-
vations, only January and February 2014 were used to represent winter
2014, due to a lack of model simulation in December 2013. The GEOS-
Chemmodel was able to reproduce the observed seasonal spatial distri-
butions of PM2.5. The spatial correlation coefficients (R) between the ob-
served and simulated seasonal mean PM2.5 concentrations for the four
seasons were between 0.72 and 0.85. However, the model generally
underestimated the observed PM2.5 concentration in Chinese cities.
The model biases against the observed seasonal mean PM2.5 over East-
ern China were −21% (winter), −20% (spring), −24% (summer), and
−27% (fall), respectively.

Fig. 5 compares the first two leading EOFs in the observed and sim-
ulated PM2.5 day-to-day variation for the four seasons in 2014. Fig. 6
shows the observed and simulated principal components (PCs) that
correspond to these two leading EOFs. We found that the GEOS-Chem
model was able to reproduce both spatiotemporal modes of PM2.5

day-to-day variability, as well as the seasonal differences in the relative
ina for winter (JF), spring (MAM), summer (JJA), and fall (SON) in 2014. Thefirst and third
columns are the first and second EOFs for the simulation, respectively. Blue and red colors
rcentages of variance explainedby eachmode are in the parentheses. (For interpretation of
rticle.)
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contributions of the twomodes. The cities used for the analysis in Fig. 5
are consistent for each season (176 for winter (JF), 174 for spring, 172
for summer, and 176 for fall). The spatial correlation coefficients be-
tween the observed and simulated EOF modes ranged from 0.70 to
0.91 for different seasons (Fig. 5). The temporal correlation coefficients
between the observed and simulated PCs ranged from 0.45 to 0.85 for
different seasons (Fig. 6). This provided us with confidence that the
GEOS-Chem model could be used to examine the drivers of the ob-
served day-to-day PM2.5 variability.

Fig. 7 shows the first EOF modes of the day-to-day variability of
PM2.5 and its chemical components, as simulated by GEOS-Chem for dif-
ferent seasons in 2014. Fig. S5 shows the mass percentage of individual
chemical components in total PM2.5 for different seasons. The leading
EOF for the primary PM2.5 components (BC, natural dust, sea salt)
showed seasonal patterns characteristic of their sources and their re-
gional removal by ventilation. For example, the first EOF of BC, which
is mostly emitted by anthropogenic sources in China (Yang et al.,
2017), showed the in-phase pattern in all seasons. This reflected the
large emission of primary anthropogenic pollutants in Northern China,
as well as their ventilation by the passage of cold fronts (Liu et al.,
2018). Anthropogenic dust was not included in our model version, but
its major EOF mode of variability would likely be similar to that of BC,
owing to their common combustive source in China (Philip et al.,
2017). In contrast, the first EOF of natural dust showed larger ampli-
tudes over Western and Northern China and lower amplitudes over
Southern China, particularly in spring, reflecting seasonal dust emis-
sions from the arid Western and Northern China. The variability mode
of sea salt was distinctively coastal, particularly in the YRD area in win-
ter and fall and in the PRD in spring.
Fig. 7 also showed the day-to-day variation of secondary aerosols
(including sulfate, nitrate, ammonium, anthropogenic SOA, biogenic
SOA) simulated by GEOS-Chem model. The first EOFs for nitrate and
ammonium reflected the “in-phase” pattern in all seasons in 2014. In
contrast, the first EOF of sulfate and anthropogenic SOA both showed
the dipole pattern in summer, where the high amplitudes over the
YRD and the BTH areas were of opposite signs. The first EOF of biogenic
SOA showed largest amplitudes over Central and Southern China,
reflecting the stronger SOA sources there (Fu et al., 2012). As simulated
by theGEOS-Chemmodel, sulfatewas the second largest chemical com-
ponent in PM2.5 following nitrate throughout Eastern China in summer
(Fig. S5). In other words, themajor source of PM2.5 variability over East-
ern China in summerwas due to secondary sulfate formation, especially
over theYRD area. The variability of BC and ammoniumwas also slightly
enhanced over YRD during summer months due to the seasonal crop
residue burning in June and July over the YRD area (Chen et al., 2017a).

Our findings were consistent with some previous studies (Zhang
et al., 2011; Zhang et al., 2017). Zhang et al. (2011) analyzed monthly
aerosol composition at 16 urban, rural, and remote sites across China
and found that the seasonal variation of sulfate were generally consis-
tent with those of carbonaceous aerosols (OC, EC), except for a distinct
increase in June and July, particularly at urban sites. In a review paper,
Zhang et al. (2017) synthesized individual published datasets, and in
the absence of widespread measurements of PM2.5 chemical compo-
nents, concluded that secondary inorganic sources contributed more
to total PM2.5 in the southern and central China. Our work
complemented these studies by using EOFs to examine the variability
of the PM2.5 components in themodel, which reflected their sources, at-
mospheric transport, and removal processes. Until a speciated



Fig. 7. Thefirst EOFmode of simulated total PM2.5, four primary PM2.5 components (BC, primary organic aerosol, dust, and sea salt), three secondary inorganic components (NO3
−, NH4

+, SO4
2

−), and two SOA components (anthropogenic SOA and biogenic SOA). Each column represents a component and four rows represent different seasons in 2014. ASOA is aromatic SOA and
BSOA is the sum of isoprene and terpene SOA.
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measurement network becomes available across China, we demon-
strated here that a model-based analysis could be used to attribute ob-
served variation of total PM2.5 to variation in the individual PM2.5
0 50 100
0

50

100

150

D
JF

-

BTH

0 50 100
0

50

100

150
N China

0 20 40 60 80
0

50

100
NE China

0 20
0

50

100

0 50 100
0

50

100

150

M
A

M
-

0 50 100
0

50

100

150

0 20 40 60 80
0

50

100

0 20
0

50

100

0 50 100
0

50

100

150

JJ
A

-

0 50 100
0

50

100

150

0 20 40 60 80
0

50

100

0 20
0

50

100

0 50 100
0

50

100

150

SO
N

-

0 50 100
0

50

100

150

0 20 40 60 80
0

50

100

0 20
0

50

100

Fig. 8. Changes in the gamma distribution function parameters for the observed and simulated
duringDecember 2013 toNovember 2019. For each subplot, the values of theβ parameter are sh
toαβ) are shown in the vertical direction. The values of theα parameter are shown by the slope
years (2014, red; 2015, orange; 2016, yellow; 2017, green; 2018, blue; 2019, purple). Diamond
shown are the values from a sensitivity simulation for 2015 driven by 2014 anthropogenic em
(For interpretation of the references to colour in this figure legend, the reader is referred to th
components. This helps policymakers to formulatemore effective emis-
sion reduction strategies to limit exposure and public health risks, espe-
cially when species-dependent health risks become better understood.
40 60 80

C China

0 20 40 60
0

20

40

60

S China

0 20 40 60
0

20

40

60

W China

40 60 80 0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

40 60 80 0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

40 60 80

=1
=2
=3
=4

obs-2014
obs-2015
obs-2016
obs-2017
obs-2018
obs-2019
mod1-2014
mod1-2015
mod2-2015

0 20 40 60
0

20

40

60

0 20 40 60
0

20

40

60

probability distribution of hourly PM2.5 in six regions in China for each of the four seasons
own in thehorizontal direction,while the seasonalmeanPM2.5 concentrations (equivalent
(colored dashed lines). Circlesmarkers showobserved values for each region for different

markers represent simulated values for each region for 2014 (red) and 2015 (orange). Also
issions (yellow diamond). Western China was not simulated. Note the variable axis scales.
e web version of this article.)



11Z. Jiang et al. / Science of the Total Environment 723 (2020) 137896
4. Changes in the probability distributions of observedPM2.5 concen-
trations in Chinese cities between December 2013 and November
2019

Our analyses in Section 3 showed changes in the observed annual
and seasonal mean PM2.5 concentrations since 2013. Here we dem-
onstrated the use of the parameters (α and β) of the gamma distribu-
tion function (Section 2.4) as an effective way to represent and
interpret the observed changes in the full PDF of PM2.5. Fig. 8
shows the observed seasonal changes of mean PM2.5 concentrations
(=αβ) and α and β parameters in six Chinese regions between De-
cember 2013 and November 2019. Across all regions, there were sig-
nificant seasonal differences in the mean PM2.5 concentrations
(Fig. 1) that were associated with seasonal variations in both α and
β, although the seasonal variation in β were more prominent. The
mean PM2.5 concentrations and β values were generally highest in
BTH and Northern China, across all years and seasons. This indicated
more frequent occurrences of extreme-high PM2.5 events in North-
ern China. Since December 2013, the seasonal mean PM2.5 concen-
trations in most regions have decreased (Fig. 2), particularly in fall
and winter. These changes were mainly driven by decreases in β
values. In other words, the changes in seasonal mean PM2.5 concen-
trations were predominantly driven by less frequent occurrences of
extremely high PM2.5 concentrations. The changes in α since Decem-
ber 2013 were less evident across the country, indicating less
changes in the frequency of extreme-low PM2.5 conditions.

Fig. 8 also shows the seasonal changes in mean PM2.5 concentra-
tions and α and β values from our GEOS-Chem sensitivity simula-
tions for the years 2014 and 2015, which elucidate the drivers of
the observed changes in PM2.5 PDF. As previously discussed in
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error bars in the second to fourth row represent the standard deviation in the region for each
Section 3.3 (Fig. S4), the model was able to reproduce the seasonal
mean PM2.5 concentration over Eastern China (Western China was
not simulated). However, the model slightly overestimated β (and
underestimate α) in BTH and Central China in spring, summer, and
fall of 2014, while underestimating β in Northeastern China (and
overestimating α) in Southern China and in fall and winter of 2014.
We found that there were significant decreases in the simulated β
values for most regions between 2014 and 2015, consistent with
the observations. Using sensitivity simulations driven by constant
anthropogenic emissions (locked at 2014 levels), we found that the
large observed and simulated changes in β values were mainly
driven by the difference in meteorology, and not by the difference
in emission, between 2014 and 2015. In comparison, neither the dif-
ference in meteorology nor the difference in emission between 2014
and 2015 led to much changes in the α parameters across China.

Our sensitivity simulations for the years 2014 and 2015 only in-
volved relatively small difference in Chinese anthropogenic emis-
sions, but Chinese anthropogenic emissions had continued to
decrease after 2015. Zheng et al. (2018) estimated that the Chinese
annual anthropogenic SO2 emission in 2015 was 17% lower than
that in 2014, but the annual anthropogenic SO2 emission in 2017
was 49% less than that in 2014. As such, the dramatically reduced
Chinese anthropogenic emissions since 2013 likely played a stronger
role in reducing the observed mean PM2.5 concentrations and β
values across China between 2013 and 2019 than indicated here.
Nevertheless, our results emphasized the very large impacts of the
interannual variation in meteorology in the observed decline of
mean PM2.5 concentrations and the decreased frequencies of ex-
tremely high PM2.5 conditions across China since 2013, consistent
with the previous analysis of Mao et al. (2019).
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5. Changes in the health risks associated with long-term and short-
term exposures to PM2.5 in China during 2014 to 2019

Finally, we examined the health outcomes associated with long-
term and short-term exposures to PM2.5 in China during winter 2014
(December 2013 to February 2014) to fall 2019 (September to Novem-
ber 2019). Several previous studies have presented epidemiological
analyses of PM2.5 related health outcomes in China and the changes in
recent years. Here we focused on how the changes in PM2.5-related
health risks were related to the observed changes in the annual means
and PDFs of PM2.5 since 2014. For the purpose of presentation, each
year was represented by the period from December of the previous
year to November of the current year.

Fig. 9 shows the estimated annual cause-specific (stroke, IHD, COPD,
and LC) AMR (per 105 people) associated with long-term PM2.5 expo-
sure in six Chinese regions between 2014 and 2019, along with the
95% confidence intervals of the estimated AMR. Although there is con-
siderably large uncertainty to the estimated value of AMR, themean es-
timated annual AMR values have decreased since 2014 as a result of the
declines in annual mean PM2.5 in all regions. The largest AMR changes
were in Northeastern and Western China, where the AMRs in 2019
were reduced by 29 deaths per 105 people relative to 2014. Because
the AMRs are highly sensitive to the age-standardized cause-specific
mortality rates in each region, we also examined the fractions of
cause-specific mortality attributable to PM2.5 long-term exposure (AF),
which provided a normalizedmeasure of cause-specific mortality. Fig. 9
shows the changes in regional annual average AF, while Fig. S6 shows
the annual average AF for each city between 2014 and 2019. As shown
in Fig. 9, the AFs have also decreased in all regions, with largest changes
approaching 9% in Northeastern and Western China in 2019 relative to
2014.

An interesting feature to note is that, for a unit decrease in PM2.5, the
relative decrease in AF was also largest inWestern and Southern China.
The slopes of the regression lines for ΔAF versus ΔPM2.5 between 2014
and 2019 were 0.0019 (BTH), 0.0020 (Northern China), 0.0036 (North-
eastern China), 0.0028 (Central China), 0.0048 (Southern China), and
0.0047 (Western China), respectively. This reflected the fact that the
shape of the exposure-response curve for PM2.5-related health risks
was steeper at low PM2.5 concentrations (Eqs. (5a), (5b); Burnett
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et al., 2014; Song et al., 2017). As such, the reduction of annual mean
PM2.5 concentrations in less polluted regions would lead to largest rela-
tive benefit in AF. Cause-specific and total annual mean AF, AMR at the
province level, as well as the lower and upper values of the 95% confi-
dence intervals, are given in Tables S4–S9. Averaged AF values for four
diseases at the city-level between 2014 and 2019 are shown in Fig. S6.

We further evaluated the annual mean relative risks (RRy) of daily
mortality associated with short-term PM2.5 exposure in six Chinese re-
gions between 2014 and 2019 (Fig. 10). As described in Section 2.5,
the dailymortality associatedwith short-term PM2.5 exposure is depen-
dent on the two-day running-mean PM2.5 concentrations. As such, it is
likely to be sensitive to the changes in the PDF of PM2.5. The second
row in Fig. 10 shows the RRy between 2014 and 2019 calculated with
the observed PDF of PM2.5, as well as the RRy calculated by applying dif-
ferent assumptions to the PDF. The RRy calculated with the observed
PM2.5 concentrations showed significant reduction across all regions
since 2014. Again, the changes in RRy per unit change in annual mean
PM2.5 were largest in Southern andWestern China, reflecting the steep-
ness of the exposure-response curve at low PM2.5 concentrations
(Eq. (9a), (9b), (9c); (Chen et al., 2017b). We found the PDFs of the
PM2.5 concentrations were indeed important for short-term exposure.
The RRy calculated using only the annual mean PM2.5 concentrations
were consistently larger than the real RRy, also due to the much lower
risks at the low-end of PM2.5 concentrations.

Also in Fig. 10, we hypothetically calculated the changes in RRy using
the observed year-specific annual mean PM2.5 concentrations (=αβ),
while locking α and β to their 2014 values, respectively. Theoretically,
larger RRy reduction can be gained by decreasing α values, which indi-
cate more frequent occurrences of extreme-low PM2.5. However, be-
cause α values have not changed much since 2014 (Fig. 8), the actual
decreases in RRy across China since 2014weremainly driven by the de-
cline of the β values.

Our analyses in Figs. 9 and 10 show that the health risks associated
with both long-term and short-term exposure to PM2.5 have both de-
creased since 2014. Even steeper decline in the health risks can be ex-
pected if PM2.5 were further reduced, as nation-wide concentrations
move toward the steeper part of the exposure-response curves. In addi-
tion, if α decreases, the relative decline in RRy for a given reduction in
annual mean PM2.5 concentration would be enhanced.
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6. Conclusions

We combined statistical methods and the GEOS-Chem model to
interpret the observed spatiotemporal and probability variations of
surface PM2.5 concentrations in China from December 2013 to No-
vember 2019, with the goal of assessing the drivers for the variations
and the implications for public health risks associated with long-
term and short-term exposure to PM2.5. Annual and seasonal PM2.5

concentrations have decreased over most areas in China since
2013, with the largest reductions over the Beijing-Tianjin-Hebei
area. The day-to-day variability of PM2.5 concentrations over Eastern
China showed two distinct major spatial modes that fluctuated in
strength seasonally. In winter, similar spatial modes had previously
been linked to regional ventilation/accumulation of pollutants asso-
ciated with winds. However, with the aid of GEOS-Chem simulations,
we showed that the dipolar pattern between the BTH and YRD areas,
was chemically driven by the secondary formation of sulfate in sum-
mer. We stress, however, that the spatial modes identified by the de-
composition is sensitive to the distribution of measurement sites,
which for our period of study was mostly located in Northern China
and coastal provinces as of Eastern and Southern China. The inferred
chemical driver, therefore, only applies to these areas well-
represented by measurements.

We further used a two-parameter gamma distribution to suc-
cinctly represent and interpret the changes in the probability distri-
bution of PM2.5. We found that the nationwide decline in seasonal
mean PM2.5 concentrations mainly reflected decreased occurrences
of extremely high PM2.5 concentrations, which was in turn strongly
driven by the interannual variation of meteorology. These changes
in the annual means and PDFs of PM2.5 concentrations since Decem-
ber 2013 has led to significant reduction of mortality risks associated
with long-term and short-term exposures to PM2.5. In particular, re-
gions that were less polluted saw the largest relative benefit per unit
decrease in PM2.5 concentration due to the steepness of the
exposure-response curve at the low-PM2.5-concentration end. Better
characterization of the exposure-response relationship for different
chemical species, for different causes of mortality, and for different
parts in China will help us more accurately quantify the health
risks associated with PM2.5 in the future.

Our integrated statistical analyses and modeling effectively diag-
nosed the drivers of PM2.5 variability and the associated health risks.
The identification of the chemical drivers of PM2.5 concentration vari-
ability can help policy makers to better define emission reduction tar-
gets to reduce high PM2.5 exposure, as well as to better control
species-dependent health risks. In addition, by identifying the connec-
tion between the changes in the PDF of PM2.5 to the change health
risks, we showedhealth benefits can be gained faster as the emission re-
duction efforts in the future further reduce the annual mean PM2.5 con-
centrations or the occurrences of very low PM2.5 becomes more
frequent. As more surface PM2.5 measurement sites become available
and the model becomes better validated in the future, the model can
be further integrated for the assessment of PM2.5-health risks on a na-
tional scale. We anticipate that our methodology will be used as part
of a broader decision tool for the management of PM2.5 pollution over
China.
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